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surface ground motion effects.  An equation of state for granite 
is developed which includes the coesite-stishovite phase change. 
Planar and spherical SKIPPER parameter calculations demonstrate 
that the two-phase equation of state should be used when stresses 
greater than 70 kbar are involved.  The cap model and the Mohr- 
Coulomb model with kinematic work hardening are generalized to 
two space dimensions and incorporated into the 2D CRAM code for 
treating rocks with high shear strength.  A continuum model for a 
regularly jointed rock mass is formulated in terms of the block 
spacing and the frictional forces on the planes of weakness.^ 
Although the blocks are considered elastic, block slippage uM 
interlock produces a formulation analugous to an elastic-plastVc 
model,  In impiuved version of the ID POROUS code has been develop 
to treat ground motion problems within the framework of the Theory 
of Interacting Continua (TINC).  Comparison calculations using the 
spherical POROUS and SKIPPER codes are presented.  The 2D FRI 
finite element code for solving the linearized TINC equations is 
applied to study the rock-fluid mechanical interactions in the 
vicinity of a fluid injection well. 
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FOREWORD 

Thi«? formal Lechnicai report entitled "Constitutive 

Models and Computer Techniques for Ground Motion Predictions," 

is submitted by Systems, Science and Software (S3) to the 

Advanced Research Projects Agency (ARPA) and to the Defense 

Nuclear Agency (DNA).  The report presents the results of 

the fourth phase of an effort to develop reliable material 

models and computer techniques for predicting the motion of 

inhomogeneous and porous geologic media.  This work, in 

support of the PRIME ARCiUS and MILITARY GEOPHYSICS programs, 

was accomplished under Contract No. DASA 01-69-C-0159CP00004), 

which was funded by ARPA and monitored by DNA.  Dr. Stanley 

Ruby was the ARPA Program Manager and Mr. Clifton B. McFarland 

was the DNA Project Scientist. 

Dr. T. David ?liney was the S3 Project Manager for the 

study.  The technical results presented in this report repre- 

ser- the work of a number of S3 staff members in addition to 

the authors.  It is appropriate to list here the contributors 

to technical Sections II through VII. 

Section II T. D. Riney, J. T. Cherry, A. J. Good, 
M. H. Rice 

Section III 

Section IV: 

Section V: 

Section VI: 

Section VII 

M. H. Rice, J. W. Kirsch, C. M. Archuleta 

J. Sweet, J. K. Dienes 

S. K. Garg, R. G. Herrmann, J. W. Pritchett 

L. W. Morland, M. M. Baligh 

G. A. Frazier, R. J. Archuleta, M. M. Baligh 

The authors would like to extend their sincere apprecia- 

tion and gratitude for the ingenuity, understanding and support 

of Ms. Darlene A. Roddy in the preparation of this report. 

The contractor report number assigned to this document 

is SSS-R-73-1490; the project number is 119. 
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I.  INTRODUCTION AND SUMMARY 

A deterministic model to predict the radiated signa- 

ture from a buried nuclear explosion is concerned with the 

characterization of the stress vfave propagated from the 

vicinity of the source to remote locations.  The stress 

level in the earth .aay be many megabars near the source, but 

at distant detection stations the signal has attenuated to 

a value which is small compared to the elastic strength of 

earth media.  Adequate geologic material response models and 

associated computer techniques are required to treat the 

complex nonlinear physical processes that occur near the 

source and to carry the calculations out to the point where 

the medium responds in a linear manner.  It is then possible 

to obtain an equivalent elastic source function which propa- 

gates a signal into the far field elastic region that is 

the same as that produced by the real explosive source. 

This equivalent explosive source function can be used as 

input data in seismic code calculations which propagate the 

signal to teleseismic distances through an appropriate 

elastic earth structure. 

The results to be presented in this report are focused 

on the development and verification of realistic material 

models and associated computer techniques for treating the 

nonlinear region near the explosion.  The work is a continua- 

tion of that performed in earlier phases of this contract, 

described in SSR-Zb?,^ 3SR-648[2] and 3SR-1071.[3]  By 

constructing material models of increasing sophistication it 

has been possible to include such complex nonlinear physical 

processes as irreversible compaction, heterogeneity, pore 

water pressure and diffusion, yield and fracture phenomena, 

dilatancy, water and rock interactions, material phase changes, 

and dependence of strength parameters on the stress history 

and thermodynamic state. 

- ■ - 
 --■..■.     - ■- 
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In a companion program at S3 the improved ground 

motion methods developed under this contract are used in a 

systematic analysis of the nonlinear processes near the 

source which affect the signature radiation to teleseismic 

distances.^ '     To accomplish this, the nonlinear shock code 

techniques for determining the equivalent explosive source 

function were merged with seismic code calculations of the 

stress wave propagation through an appropriate clastic earth 

structure to remote sites. 

A typical geologic medium consists of a rock or soil 

matrix containing cracks or pores that may be partially filled 

with water.  Even if the matrix material is unchanged, the 

porosity and the water content will vary with depth and with 

surface distance and the stress propagation characteristics 

of the medium will vary accordingly.  For teleseismic calcu- 

lations it is impossible to know the porosities and degrees 

of saturation at inaccessible nuclear test sites.  Even when 

local geological conditions and the water table location 

have been established by field logging tests, as would be 

possible in evaluating the vulnerability of underground 

structures, it is economically impractical to perform labora- 

tory material properties tests on all the porosities and 

degrees of saturation that occur.  Consequently, it is 

desirable to construct the material models in such a fashion 

that the response of the medium can be predicted as these 

quantities are varied. 

The early modeling effort centered on Nevada Test 

Site (NTS) tuffs as representative of partially saturated 
n 21 porous geologic media.1 ' J  A computer routine was developed 

which calculates the isotropic thermodynamic states of 

rock-water-void mixtures, including a description of irrever- 

sible collapse of the air filled pores (void volume).  The 

routine (TAMEOS) calculates the response of the composite 

- ■- - - —  - ■ 
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in terms of the behavior of the isolated rock and water com- 

ponents and may be readily used in standard ground motxon 

computer codes.  It includes several options for the CtUihap 

response and the partition of energy between the rock and 

water components.  The routine was incorporated into the 

Lagrangian ID SKIPPER code and a series of spherical calcu- 

lations made for a representative tuff with varied degreos 

of water saturation of the pore space. 

The recent Mine Dust HE test provided an excellent 

opportunity to test the validity of TAMEOS for partially 

saturated media with relatively low shear strength.  This 

1000-lb nitromethane shot in tuff was conducted in Area 16 

at NTS.  As part of this test program, other contractors 

generated static test data on core samples from the site, and 

fielded radial stress and velocity gages to provide a descrip- 

tion of the stress wave at various radial distances from 

the spherically symmetric source.  Section II of this report 

presents the results of pretest predictions of the ground 

motion calculated u.ing ID SKIPPER with the TAMEOS equation 

of state routine and a Mohr-Coulomb plasticity model fitted 

to strength data from the core samples.  The predicted time 

resolved histories at the various gage locations are in very 

good agreement with the corresponding measured time histories. 

The Mine Dust HE results reinforce our confidence that 

realistic ground motion predictions can be made at least for 

relatively weak rock, such as tuff.* Parameter calculations 

illustrating the effect of water vaporization at a free sur- 

face are also presented in Section II.  The planar mode of 

SKIPPER was used to compare the stress pulses calculated 

'A version of TAMEOS has subsequently been incorporated^nto 

:onrrrerwrtdh%UhSe1taemmingf0and8rc0oUn?dairen. of underground 

nuclear tests. 
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using the TAMEOS routine with the calculations using an 

analytic form of the equation of state which does not treat 

water vaporization.  In all cases the rote of pressure decay 

of a function of depth is significantly less in the calcula- 

tions with the TAMEOS scheme.  The backward momentum of the 

vaporized material is offset by an increase in the forward 

momentum carried by the stress pulse.  The importance of 

this effect on ground motion and crater formation from near 

surface nuclear burst is apparent. 

Realistic ground motion calculations for geologic 

materials with high shear strength (e.g. granite) require 

plasticity models more sophisticated than a Mohr-Coulomb 

model.  Generalized plasticity models that fair the complex 

deviatoric strength properties of hard rocks observed in 

laboratory tests with a high pressure equation of state 
[31 were presented in an earlier report.1 J  Major emphasis was 

placed on a generalized Mohr-Coi'xomb model with kinematic 

work hardening and a generalized Weidlinger cap model to 

treat the required r.'.nge of pressure and strain. The ID 

SKIPPER code was then applied to compare the Hard Hat and 

Pile Driver ground motion measurements with the calculations 

using these two models.  It was found that the inclusion of 

the Bauschinger effect (kinematic hardening) stretched out 

the pulse over a longer time at a fixed station resulting 

in reasonable agreement with the field measurements. More- 

over, it was necessary to greatly scale down the rock strength 

from that measured on competent laboratory specimens.^ ' 

A major unceitainty in the model for granite used in 

these earlier code calculations is the possibility of a phase 

change at high pressures.  Consequently, a two-phase equation 

of state model for granite was developed which is based on 

laboratory shock wave data and the assumption that some time 

is required for mixtures of the two phases to reach equilibrium. 

Ihe model is presented in Section III along with a series of ID 

10 
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SKIPPHR planar and spherical code calculations to investigate 

the effects of the phase change.  The difference between the 

stress profiles and attenuation rates for the two-phase model 

and a single-phase model is pronounced.  The attenuation rate 

is greater for the two-phase model and the stress profiles 

are stretched out.  These comparisons indicate that a realistic 

treatment of ground motion should include explicitly any possi- 

ble phase changes. 

Section IV presents the two-dimensional formulation of 

the kinematic work hardening and Weidlinger cap models and 

describes the manner in which they have been incorporated 

into the Lagrangian 2D CRAM computer code as options.  This 

code treats two-dimensional continua in either plane or ro- 

tationally symmetric geometry.  The single-phase analytic 

equation of state used is the same as that employed in the 

earlier SKIPPER calculations for the Hard Hat and Pile Driver 

comparisons, but the coding has been arranged to facilitate 

future changes.  For example, either the t.vo-phase model for 

granite or TAMEOS can be readily adopted. 

Standard ground motion computer codes, such as SKIPPER 

and CRAM, treat a geologic medium as a single continuum in 

that each computational zone has associated a single value 

of pressure, velocity, etc.  Homogenized mixture equations 

of state (e.g. TAMEOS) cannot treat relative motion of the 

pore water with respect to the matrix material.  For soils 

and rock aggregates the relative motion may be an important 

effect in some applications.  In rock media the pressure of 

the pore water will differ from the stress carried by the 

matrix material and the strength properties of the rock are 

strongly affected by this difference.  In recognition of these 

limitations of standard methods of analysis, the Theory of 

Interacting Continua (TINC) was adopted to provide a frame- 

work general enough to allow explicit treatment of these 

physical effects.  Each volume is considered to contain both 

11 
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rock and water components with provisions for momentum and 

energy exchange between the two components by inclusion of 

interaction terms in their respective governing equations. 

The early TINC modeling effort was restricted to a 

mechanical theory. fl'2]  The formulation was subsequently 

extended to include thermodynamic effects, irreversible 

crushup, and an improved model for the deviatoric strength 

response of the rock matrix component.^  In Section V 

additional improvements in the theory are described together 

with the rumerical procedures used in the associated ID 

POROUS code for solving the governing system of equations. 

POROUS treats both planar and spherical geometries.  A 

series of parameter runs in the latter configuration is 

also presented.* 

Section VI presents the results of a study which has 

the objective of deriving a rational basis for scaling rela- 

tions between laboratory and field strength data.  The 

analysis considers the in situ geologic medium to contain 

regularly spaced planes of weakness (e.g., joints or faults). 

Each block is considered to deform elastically but relative 

slippage between blocks is permitted.  A continuum model is 

formulated which is analogous to an elastic plastic model 

where the shear strength is determined by the joint spacing 

and the frictional properties of the fault planes.  As a 

consequence of this analogy, it appears that the model could 

be incorporated into a continuum mechanics code such as CRAM 

once sufficient data to define slippage and block interlock 

are available. 

The TINC framework has been successfully used at S3 in a 
study of stress wave effects in reinforced composite 
materials. [5,6]  The regular geometry and interfacial 
bond permit the required interaction terms to be calculated 
in terms of the dimensions, properties and geometries of 
the reinforcements. 

12 
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Section VII is not concerned with ground shocks.  It 

presents the results of a study of the mechanical interaction 

of a pore fluid with a saturated rock matrix as the fluid is 

driven through the medium under a hydraulic gradient.  A 

quasistatic formulation of the process within the linearized 

TINC equation was given earlier.^  A 2D fluid-rock interac- 

tion code (FRI) for treating the coupled elastic and diffusive 

processes has been developed.  Calculations of the perturbations 

of the stress field in the rock mass surrounding a fluid injec- 

tion well are presented. 

In Section VIII, the status of the work is summarized 

and suggestions are made for its application to a number of 

current problems. 

13 

  



II.  HOMOGENIZED WET TUFF CALCULATIONS 

2.1 ROCK-WATER-VOID MIXTURE MODELS 

In modeling porous geologic media, it was recognized 

from the outset that rock-water-void (air) volume fractions 

would vary from one test site to another and that the material 

response would vary accordingly.   '  Consequently, the models 

were constructed in such a fashion that the response of the 

medium can be predicted as the volume fractions of the rock, 

water and air (void) are varied: 

(1) (2) (3) 
n (Rock),   n  (Water),    n (Void) 

The geologic medium is considered as a composite and a descrip- 

tion of its wave propagation characteristics has been sought in 

terms of the behavior of the isolated rock matrix and water 

components.  The Theory of Interacting Continua (TINC) was 

adopted to provide a framework general enough to allow explicit 

treatment of pore pressure effects and relative motion between 

the rock and water components (see Section V).  However, since 

practical 2D calculations are currently performed using computer 

codes that treat a medium as a single continuum, the bulk of the 

material response modeling effort has been conducted under the 

additional homogenizing assumption of no relative motion between 

the rock and water. 

One may derive various mixture equations of state 

on the basis of a number of assumed equilibrium conditions 
r 2 1 

achieved behind a Shockwave.   J  A unique set of shock states 

is achieved only when a constraint is prescribed for the 

partitioning of internal energy between the rock and the 

water.  Such a set of states can be obtained if the pressure 

and tempeiature of the constituents are equal (PTEQ model). 

If there is insufficient time for thermal equilibration, 

but the components are homogenized to the extent that they 

are in pressure equilibrium, other energy partitions may 

15 
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attain, such as in the PEQ and P*EQ models.  In the PEQ model 

each component is assumed to independently attain the mutual 

equilibrium by a single shock process and no heat transfer 

between components is permitted.  The P*EQ model is based on 

an intermediate partition of the shock energy based on the 

multiple shock sequence whereby the pore water and rock 

matrix materials eventually attain their equilibrium pres- 

sure.  Again, no heat transfer is permitted between the 

rock and water components. 

Although the predicted Hugoniot p-V and u-U curves 

are very nearly the same for all three models, the Hugoniot 

temperatures are very different.  In Fig. 2.1 shock tempera- 

ture in the water and tuff components predicted from the 

PEQ, P*EQ and PTEQ models are shown for saturated wet tuff 

(mass function M = 151).  The lower temperature of the water 

component for the PTEQ and P*EQ models imply that it may 

undergo a phase transformation to Ice VII, whereas this would 

not occur in the PEQ model. Fig. 2.1.  Both Water-ice VI and 

Water-ice VII phase changes have often been found in static 

tests but only recently has such a transformation been ob- 

served under shock loading conditions.  Gaffney^   *     ob- 

served the Water-ice VII transformation between 20 and 26 

kbars in gas gun experiments with nearly saturated clay and 

shale specimens from the Middle Gust site.  Since thermal 

equilibrium is not attained under the test conditions, these 

results appear to support the P*FQ model. 

For a given model and shock pressure, the shock 

temperatures depend on the volume fractions of rock/water/ 

void.  The residual energy in the components of the shock 

processed mixture also depend on the relative volume 

fractions.  This is illustrated in Fig. 2.2 by the release 

adiabats calculated for a PTEQ model of wet tuff.  The in- 

creased shock heating for the mixtures with higher air- 

filled porosity produces vaporization of the water at a 

highei pressure during the release process. 

16 
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Fig. 2.1--Shock temperatures calculated from the 
PTEQ, PEQ and P*EQ models for saturated 
TnrS wet tuff with M  = 159o.  The Water- 
ICE VII phase line ¥s hased on static 
test data (see Ref. [ 2 ]). 
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Fig. 2.2--Porosity-enhanced vaporization of water 
component in shock processed wet tuff. 
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A computer routine has been developed which calculates 

the Isotropie thermodynamic states of rock-water-void mix- 

tures, including a description of irreversible collapse of 

the air-filled pores (void volume).^   These states are 

tabulated and may be utilized in conjunction with a table 

look-up procedure as a subroutine in standard ground motion 

codes.  Primary inputs to the TAMEOS subroutine (for Tabular 

Arrays of Mixture liquation Of State) are the homogenized 

model to be utilized (e.g., one of the PTEQ, PbQ or P*liQ 

models), equations of state of the isolated rock and water 

components, and initial volume fractions of rock, water and 

air-filled pores.  For cases in which experimental data are 

unavailable, a simple crushup model is employed requiring 

the zero pressure extension (a ), zero pressure bulk modulus 

(k), pressure at elastic crush limit (pe) , and crushup pres- 

sure (p ).  In cases where experimental data are available, 

the crushup curve can be directly incorporated into the 

TAMEOS subroutine. 

The TAMEOS subroutine has been incorporated into the 

S3 single continuum code SKIPPER and a series of spherical 

calculations illustrating the effect on ground motion of 

the rock-water-void volume fractions were earlier reported 

for representative NTS tuff.  Some additional parameter cal- 

culations to examine the effect of water vaporization at a 

free surfac- will be described here.  First, however, the 

results of predictive ground motion calculations conducted 

prior to the Mine Dust HE test will be presented along with 

the stress-time and velocity-time histories measured at 

various radial distances from the working point.  The good 

agreement between the predictions and the measurements 

provides us with some confidence in the TAMEOS subroutine 

for generating equations of state for partially saturated 

sedimentary materials. 

19 
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2.2 MINE DUST HE PREDICTIONS 

2.2.1  Background 

The Mine Dust HE experiment working point (KP) was 

located 15 ft below the floor of a tunnel at a distance of 

45 ft from the Ü16 a.05 drift at Construction Site (C5) 

1+25.66.  The layout of the test is presented in the drawing 

in Fig. 2.3.  The section shown in Fig. 2.4 depicts the 

approximate location of the gate emplacement holes relative 

to the WP.  The WP and all gages were located in Bed 3 (as 

was the earlier Diamond Mine HE shot) tuff.  Bed 3 is more 

homogeneous than Beds 2 and 4 which lie below and above it, 

respectively.  The primary reason for choosing Bed 3, how- 

ever, is its higher volume of air-filled porosity as 

illustrated in Fig. 2.5.  The representative load-unload 
r o "I 

hydrostats shown there were constructed by Terra Tek1 

from laboratory data from nine core samples drawn from sites 

of previous tests in Area 16.  An earlier test, also employing 

a lOOO-lb nitromethane high explosive source, was conducted 

for a WP in nearly saturated tuff in the Hudson Moon reentry 

drift in NTS Area 4.^ 9 ^  The two shots are part of a com- 

bined theoretical and experimental investigation of the 

relevance of material properties to the ground motion and 

stress pulse attenuation characteristics in the amplitude 

range of interest to the stemming and containment problem 

(approximate range of 20 to 1 kbar).  The program was 

directed by the DNA Materials Properties Subcommittee, chaired 

by C. B. McFarland of Headquarters, DNA. 

The Mine Dust HE test provided an excellent opportunity 

to test the ground motion predictive technicues developed 

under this contract.  Radial stress and velocity gages were 

fielded at radii selected to provide a description of the 

stress pulse propagated from the explosive source out to a 

distance where its amplitude attenuates to the order of 

2 0 
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0.1 kbar.  The test was conducted on May 10, 1972.  Two pre- 

test calculations were made using the ID SKIPPER computer 

code--one on May 7 and one on May 8.  The high explosive 

burn portion of the calculations utilized an available 

equation of state for nUromethane.  The Isotropie response 

of the site medium was described using the S3 general computer 

routine (TAMEOS) to generate the thermodynamic equation of 

state of partially saturated wet tuff.  The pore crushup in- 

put paramete   used in TAMEOS and the description of the 

deviatoric response of the tuff were based on limited static 

data for specimens taken at Mine Dust HE site. 

The attenuation of the peak radial stress with dis- 

tance predicted in the two calcualtions were sent to DNA 

Headquarters prior to the test.^1ÜJ  It became clear, even 

before gage recordings had been completely reduced, that the 

predictions were in close agreement with the peak stresses 

recorded by the in_ situ gages.  On June 28, the DNA Materials 

Properties Subcommittee met at S3 to review in detail the 

Mine Dust HE test results and the pre-test predictions.  It 

was concluded from this comparison that, 1.he agreement was 

perhaps as good as any yet obtained in a field test. 

In the following a brief description of the model 

used in the SKIPPER calculations is given.  The predicted 

time resolved histories at the various gage locations are 

then presented on the same plot as the corresponding measured 

time history.  Static material properties data were generated 

by Terra Tek (S. J. Green); radial stress histories were 

measured by SRI CC Smith) and GRT (11. Kratz); velocity 

histories were measured by ATI (R. Hartenbaum). 

2.2.2  Test Site Medium 

Prior to digging the 45 ft tunnel to reach the WP 

(see Fig. 2.4), an exploratory core sample was drawn and 

hydrostatic load and unload tests were made by Terra Tek for 

2 4 
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specimens at several locations along the borehole.  Representa- 

tive data from these tests are described by the "first 

exploratory hole" curve shown in Fig. 2.5.  From the un- 

loading path after compression above the pore crushup pressure 

fp   • 2.0 kbar). the volume,function of the air-filled 
cr =        '' (3) .      , 

pores was estimated to be  n  =7.2°^.  After the tunnel was 
^ o 
dug, samples were taken from these tests are described by 

the "instrument holes" curve shown in Fig. 2.6.  From the 

unloading path for these data it would appear that the pore 

crushup pressure is  p.  ^1.0 kbar and the air-filled 

porosity is 
(3. 

3.4°. 

A core sample was drawn from a second exploratory 

hole in an attempt to better determine  n .  The value of 
(3) for the second exploratory hole was determined by Terra 

Tek to be close LO that of the instrument holes.  Neverthe- 

less, the uncertainty remained since the less compressible 

specimens appeared to be damaged during the coring process 

and more reliance was placed in the earlier data from the 

first exploratory hole. 

The members of the DNA Materials Properties Subcommittee 

concluded from examination of the materials and the available 

hydrostatic test data that the air-filled porosity was 

probably bounded by 

(3) 
3.41 <  n  < 7.21 (2.1) 

and R. L. Bjork of S3 was asked to make predictive calculations 

for these " imited cases using the same procedure that he used 

earlier in his successful Hudson Moon HE predictions for 

stresses above 1 kbar.^ " ^  A closer approximation for the 

air-filled porosity, however, was 

(3) 
h%     to  6.51 (2.2) 

2 5 

-  - mamm «HUM __ igUft 



 "'       ■ ^mmmmmm "     "V    ' 

M 
c 
8 
.H     • 

o 0^4 
■-I 0)  <U 
o 

s
e
t
s
 
o
f
 
sp
 

b
y
 
T
e
r
r
a
 
T 

00 
o 013 • ^  <U o 

/—* VH M > O  Q 

> IW C 
< 

1 

4) 

" 4-1 

•o 13 *-> 
'O ^-v rt 

V u a 
m M ■ H 

C +J 
nl 

■P   0) 

1 O wH 
^   tfl 

^H 13 
o XW 

» > X E 
o 

(U   4-> 
o > n 

«* •H  3 
Kl fJ Q 

♦—^' rt 
o 

p
r
e
s
e
n
t
 

at
 
M
i
n
e
 

(Nl (U o M a 

■ 

F
i
g
.
 
2
.
6
-
-
 

t
a
k
e
 

(jcqn)   a^nssoad 

26 

MM^M^MMflHMi MM. 



WPP«" •  ■M »■! ,  ..»._.  ,v  

with  5?6  considered is the best estimate.  Consequently, 

S3 was also asked to make predictive calculations for these 

cases using a more complete material model developed under 

this contract in order to permit calculations down to 0.1 khar 

These latter two calculations will be described in the sequel. 

The SKIPPER calculation for  n  ■ 6.51 was run on May 
tl)       0 

7 and the calculation for  n  = 5% was made on May 8.  For 
0 

both representations of the Mine Dust HE medium the water 

mass fraction was taken to be M^ «0.17 and the tuff grain 

density was set equal to 2.4 g/cc.  These values are 

representative of those measured by Terra Tek.  The corres- 

ponding values of the bulk density and volume fractions of 

the rock-water-gas mixtures are listed in Table 2.1 for the 

two pre-test calculations.  The corresponding percent of 

the pore space that is air-filled in each representation is 

also listed, 17.41 for the May 7 run and 13.7% for the May 8 

run. 

2.2.3  Isotropie Response Model for Medium 

The Isotropie response of the tuff was developed using 

the TAMEOS routine which calculates homogenized rock and water 

mixture states and stores them in a tabular array for use with 

standard ground motion codes.  During a calculation, individual 

states are retrieved by a rapid table look-up routine.  In the 

present calculations, the PEQ model was assumed, i.e., the 

two materials are assumed to shock to the same states as the 

pure materials and isentropically release without any heat 

transfer between the constituents.  The equation of state 

utilized for the dry, compacted tuff component is a minor 

modification of that described in 3SR-1071 [3 , P- 31]•  It 

uses the Ilugoniot shock-particle velocity fit 

II = a + bu + du2 

27 
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TABLE 2.1 

REPRESENTATION OF MINE DUST HE MEDIUM 

Water Mass Fraction, M. 
N 

In-Situ Density (g/cc) 

Tuff Grain Density (g/cc] 

(1) 
Grain Volume Fraction,  n0 

(2] 
Water Volume Fraction,  n^ 

(3) 
Air Volume Fraction,  n^ 

(3)    /(2)    (3) 5j   nt)   iä) \ 
Vl no+ no) 

May  7  Run 

0.17 

1.81 

2.4 

0.62645 

0.30855 

0.065 

17.41 

"lay  8   Run 

0.17 

1.84 

2.4 

0.6365 

0.3135 

0.05 

13.7% 
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with a - 3.5025 mm/ysec. b - 0.70477. and d = 0.10055 (mm/ysec) 

The solid grain density is taken to he 2.4 gm/cm3, and the 

initial density of the saturated mix (33 percent volume frac- 

tion water) is 1.9374.  The Mie-Grüneisen equation of state 

is used for the tuff component, where the Grüneisen ratio  G 

is determined from 

Go = const = G p  = 0.792 
F 0  0 

[111 
The water equation of state is that of Bjork 

TAMEOS also provides for several alternate treatments 

of air-filled porosity and the irreversible collapse of 

the air-filled pores, i.e.. the pores may he considered as 

completely in the rock component or partitioned between the 

rock and water components.  Since the Terra Tek data was 

available on the actual rock-water-air composite, it was 

convenient to select the model which treats the crushup pro- 

cess in a manner analogous to the p-a model of Herrmann.' 

In this version of TAMEOS14 ] the porosity is defined relative 

to the rock-water composite. 

(1) 
n + 
in 

(2)  (3) 
n +  n 
 CTT" 

11 

(i) CD 
n +  n 

(2.3) 

= - P(V/o, h) 
(2.4) 

where  P  is evaluated from the PEQ table IU ing the values of 

V. a(V)  and  E  fiom the SKIPPER code for that particular 

time step and finite difference zone. 

A form of a(V) in TAMEOS was selected which incor- 

porates the key aspects of the physics of the irreversible 

crushup process, and requires a minimum of material para- 

29 
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meter specifications.  The function representing the loading 

curve consists of a plastic crush regime and an elastic 

regime.  The plastic regime is modeled hy the expression 

a 1 for p > p 

(2.5) 

= 1 + (a -1)1 - for Pe 1 P < Pc 

where 

a  = distension ratio at limit of elastic region, 

p  = pressure at upper limit of elastic region, 

p  = pressure at which air-filled pore:; are 

completely crushed. 

Upon unloading the pores are assumed to completely recover 

for p ^ p , to remain completely closed for p ^ P , and 

a  is allowed to vary smoothly between these end points of 

the plastic pore collapse regime.  In the elastic regime 

the distension ratio is computed from 

a = a  + ß (a - e"p/^) for 0 <^ p < p 

where 

(2.6) 

a  = distension ratio at zero pressure. 
o 

Imposition of continuity of da/dp  at  a = a  provides 

one equation for evaluation of the parameters  ß  and  n. 

The other condition is provided by evaluating the zero 

pressure bulk modulus (k) of the porous mixture. 

In summary, the only input quantities required for 

the complete TAMEOS equation of state used in the present 

30 



« ■  '       " "I 

calculations are the representative component specifications 

(given in Table 2.1) and values for  o^, k, pe  (or, alterna- 

tively, ae) and pc.  Values used for the May 7 and May 8 

SKIPPER calculations are presented in Table 2.2.  The values 

for  p  were approximated from the Terra Tek data presented 

in Fig! 2.6, and the value used for  pe was estimated from 

earlier LLL data reported by Stephens et a]_ for the 

Diamond Dust Site in Area 16 at NTS.  The value for  k  was 

estimated from the acoustic velocity measurements in this 

earlier report.  In Table 2.2 the corresponding values of ae 

are also listed. 

In Fig. 2.7 the low pressure Isotropie response model 

generated by TAMEOS using the input data in Tables 2.1 and 2.2 

is depicted for the May 8 Run.  The unloading curve after 

loading above the crushup pressure is seen to fall close to 

the data  reported by Stephens et al.[15]  At high pressures 

the shock processing of the homogenized rock/water mix can 

vaporize the water.  This effect is included in the TAMEOS 

treatment as is illustrated by the sudden volume increases 

in the release isentrope curves shown in Fig. 2.8.  The curves 

are for a saturated mix (Mw ■ 0.17) whereas the actual 
SKIPPER calculations account for the presence of air-filled 

porosity; the extra pV energy in the calculations produces 

vaporization at pressures somewhat lower than depicted in 

Fig. 2.8. 

2.2.4  Deviatoric Response Model for Medium 

The curve marked "measured" in Fig. 2.9 summarizes the 

data taken by Terra Tek on deviatoric stress as a function 

of deviatoric strain that was available prior to the test. 

In the absence of more complete infarmation, the deviatoric 

stress in the pre-test calculations was treated by an 

elastic-plastic model with a Mohr-Coulomb yield condition. 

S2 + S2 + S2 <l   [Y(p)] 
1      2       3 - -5 

C2.7) 
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TABLE 2.2 

CRUSHUP PARAMETERS FOR PRE-TEST MINE DUST HE CALCULATIONS 

May 7 Run May 8 Run 

Crushup Pressure, Pc (kbar) 1.5 1.25 

Elastic Pressure, pe (kbar) 0.15 0.15 

Bulk Modulus at Zero Pressure, 
k (kbar) 27.5 27.5 

Initial Distension Ratio, o^ 1.0695 1.0526 

Distension Ratio at Elastic 
Limit, ae 1.0623 1.0459 

32 
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2.0 - 

1.5 

1.0 - 

0.5 - 

• LLL unloading Jata unit 3 
(Diamond Dust Site) 

Elastic 
< Limit, p. 

0.49 0.50 0.51    0.52 0.53 0.54 0.55 

Specific Volume (cm /g) 

Fig. 2.7--Irreversible crushup model generated 
by TAMEOS for May 8 Run (59o air-filled poro- 
sity).  The model closely reproduces unloading 
data reported by LLL for samples selected in 
the vicinity of the earlier Diamond Dust shot. 

[Ref.   15] 
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0.1 1.0 10.0 

Volume   (cm'/g) 

Fig.   2.8--Ilugoniot  and  release   isentrope   for  saturated 
tuff   (M ,  ■   0.17) . w 
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where the S.  are the components of the principal devia- 

toric stress and Y ■ Y(p)  is the yield stress in shear. 

Within the elastic region the stress and strain 

deviators are related by Hooke's law for shear deformation, 

s . 
iJ 

2u e. 
U 

(2.8) 

where  y  is the shear modulus of the material.  Multi 

plying both sides by itself yields 

/T~  ■ 2\i/T~ 
2 2 

where J  and  I  are the second invariants of the 
2 2 

stress and strain deviator tensors, 

(2.9) 

s . . s e.  e - 
2     Z   IJ IJ 2     7   IJ   IJ 

When the shear stress reaches a critical value, 

J, " T^CP)2 

the material is restricted from going outside the yield 

surface, i.e. , 

/T <  YCp)//! 
2 — 

(2.10) 

(2.11) 

(2.12) 

Since J  and  I  are invariants they may be 

evaluated along principal axes where the expressions reduce 

to 

I' 
2 

= i (s; + s: + s:) (2.13) 

(2.14) 
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In the triaxial tests the radial aiid hoop components of 

total stress  (o)  and total strain  (t.)  are equal so that 

one has simply 

y   2        /I 
a -a 1 2    /I 

e -e 
i  2 

Consequently, the slope on the "measured" curve in Fig. 2.9 

can be replaced by the simple bilinear approximation shown 

there, i.e., a constant shear modulus of  y = 15 kbar.  The 

corresponding yield stress at the confining pressure of 

4 kbar is 

Y  = JSJ' = 0.632 kbar 
n 1    - 

At lower confining pressures the yield strength is smaller 

and to reflect this effe~.t the yield surface is represented 

by 

Y(P) = Y  2_ (2 
o P P/P.) for P < Pr 

(2.16) 

= Y for p > p 

The value of p  = 0.6 kbar listed in Table 2.3 was estimated 

from the earlier LLL data reported by Stephens etalL   J for 
the Diamond Dust site in Area 16 at NTS. 
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TABLE 2.3 

DEVIATORIC STRENGTH PARAMETERS FOR PRE-TEST MINE DUST HE 

CALCULATIONS 

May 7 Run May 8 Run 

Shear Modulus, y(kbar) 

Maximum Shear Strength, Y  (kbar) 
0 

Pressure for Maximum Strength, 
p  (kbar) 

0 

15 

.623 

0.6 

15 

0.623 

0.6 

3 B 
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2.2.5     U.E.   Source  Equation of  State 

The  burning process  in the  HE  source was  treated using 
the empirical Jones-Wilkins-Lee  equation of state to  describe 

the nitromethane detonation products.     This equation  is  pre- 

scribed by  the  pVE  relation 

P " AU " CT 
\ -c v 

(^-rV) 
-C V , 

2     ,   »E e + T (2.37) 

where p is the pressure in dynes/cm2 ; V is the specific 

volume in cc/g; and E is the specific internal energy in 

ergs/g. The constants for nitromethane are 

A = 2.093 x 1012 dynes/cm2 

B = 5.69 x 1010 dynes/cm2 

C  = 4.9632 g/cc 

C  = 1.3536 g/cc 
?. 

co = 0.3 

In the SKIPPER calculations the density of nitromethane 

was taken as 1.128 g/cc, the detonation front propagated 

from the center of the sphere at wave speed of 6.287 x 105 

cm/sec, and the chemical energy released on detonation was 

4.53 x 1010 evgi/g.     The corresponding Chapman-Jouguet 

pressure and density are 1.4 * 10^ dynes/cm2 and  1.644 

g/cc. 

According to Fig. 2.8, the C.J. pressure of 140 kbars 

will cause the water to be vaporized in only a very '-.mall 

region near the high explosive source.  The vaporization plays 

a negligible role, at most, in the two pre-test predictive 

calculations since they were run at an overburden pressure 

of 0.04 kbar. 
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2.2.6  Comparison of Predictions with Measurement 

The peak radial stress as a function of distance is 

shown in Fig. 2.10 for each of the two pre-test SKIPPER calcu- 

lations.  The attenuation rate change apparent from the log- 

log plot in Fig. 2.10 reflects the transition from hydrodynamic 

behavior to a low stress regime where the strength of the 

medium predominates.  The two SKIPPER runs give very nearly 

the same peak stresses for the full range of the calculations. 

For completeness, the three measurements of peak radial stress 

reported by Kratz in the earlier Diamond Mine HE test are 

shown for comparison.   The radial stress time histories for 

the two prediction calculations are compared at R = 3.27 ft 

and 7.67 ft in Fig. 2.11, and at R = 8.82 ft and 16.83 ft in 

Fig. 2.12.  It is apparent that the general shape of the stress 

histories as well as the amplitudes, are quite similar. 

Differences in the time of arrival of the peak values, how- 

ever, are indicated. 

In the semi-log plot of Fig. 2.13 the peak stress 

measurements by SRI (Smith) and CRT (Kratz) for the present 

Mine Dust HE shot are compared with the predictions.  The 

agreement between the stress amplitude predictions and the 

present Mine Dust HE measurements is seen to be quite good. 

We note, however, that the gage at R = 16.94 ft recorded a 

value about double that which would be consistent with the 

other data.  The gage at R = 21.5 ft recorded a value that 

exceeds the prediction by about the same amount that the 

value measured on the earlier Diamond Mine HE shot lies 

below the present predictions (see Fig. 2.10). 

In Fig. 2.14 the time-of-arrival of the peak radial 

stress for the two prediction calculations are presented. 

The agreement with the SRI and CRT measurements is better 
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Fig. 2.10--Predicted attenuation of peak radial stress with 
distance from the source for the Mine Dust HE test:  May 7 Run 
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a 

Fig. 2.11--Comparison of radial stress histories 
at R = 3.27 ft and 7.67 ft for the two Mine 
Dust HE prediction calculations:  May 7 Run 
7(3)       \ /(3) 

'o = 6.51 I, May 8 Run I n0 = 5 ■) 
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2.12--Comparison of radial stress Histories 
= 8.8 2 ft and 16.8 ft for the two Mine 
HE prediction calculations:  May 7 Run 

'(3) 
6.506 , May 8 Run I nn = 51 

43 

.-■,.„.- .. -■... _.. _ — —•— ■' — ■ ■ '         *jä 



"^^^mmmmmm ■' '    i ■ ■ ■   i . i ii ^^^^r^m^^i^m^^^^m^^m^mm^mmKmmmmmmmJ 

100 

80 

60 

40 

i 
M 
V 

20 

10 

1.0 
7 

0.8 - 

0.6 - 

0.4 

0.2 _ 

0.1 

  May 7 Run 

■ May 8 Run 

■ SRI Test Data 

# GRT Test Data 

8       12       16 

Radial Distance (feet) 

Fig. 2.13--Comparison of predicted stress attenuation curves 
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6.SI I, May 8 Run 
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for the May 8 Run than the May 9 run; this supports the 

pre-test concensus that 5% air-£illed porosity is the best 

estimate for the Mine Dust HE medium.  Except for the 

anomalous recording on the gage at R = 16.94 ft, the agree- 

ment is very good.  The predictions for the time-of-arrival 

of the foot of the pulse are not in such good agreement 

with the measurements as is illustrated in Fig. 2.15.  These 

results imply that our model for the irreversible crushup 

behavior closely simulates the actual medium behavior, but 

the estimated value of the bulk modulus at zero pressure (k) 

was smaller than that of the medium. 

Predicted radial stress profiles, for S%  air-filled 

porosity, are presented in Figs. 2.16 through 2.20.  Once the 

peak pressure falls below pc = 1.25 kbar, which occurs at 

about R = 7 ft according to Fig. 2.13, the model for the 

irreversible crushup and subsequent unloading of the medium 

becomes operative (see Fig. 2.7).  The unloading wave travels 

at a velocity greater than the stress wave front.  As it 

overtakes the front the stress profile shape changes rapidly, 

acquiring a two-hump character at about t = 3.0 msec, which 

persists thereafter.  During this transition period the lo- 

cation of the peak stress, relative to the front, and its 

amplitude are very sensitive to the details of the irreversible 

crush behavior of the medium.  This effect may have contri- 

buted to the anomalous GRT measurement at R = 16.94 ft. 

Once the peak pressure falls below pe = 0.15 kbar, 

which occurs at about R = 20 ft according to Fig. 2.13, the 

air-filled pores are no longer collapsed in the crushup 

model (see Fig. 2.7).  The transition of the medium to an 

elastic regime is the basis for the increase in slope which 

occurs at about this value in Figs. 2.10 and 2.14. 
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Fie. 2.16--Predicted radial stress profile at 

t = 1.1 msec, May 8 Run I n() = Slj. 
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2.17--Predicted radial stress profile at 

t  =   2.5  msec,   May   8   Run {% - 4 
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Fig. 2 .18--Predicted radial stress profile at 

t = 3.3 msec, May 8 Run I n0 = 511. 
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Fig. 2.19--Predicted radial stress profile at 

t = 4.4 msec, May 8 Run ( n0 = 5%). 
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Tn Figs, 2.21 through 2.26 the SRI measurements of 

radial stress history are compared with the corresponding 
(3) 

prediction of the May 8 Run  n0 ■ S%   .     Radial stress his- 

tories measured with the GRT gages are compared with the 

calculations in Figs. 2.27 through 2.31.  Finally, the radial 

velocity histories measured with the ATI gages are compared 

with the predictions in Figs. 2.32 through 2.35. 

The plots of the calculated stress histories clearly 

display an elastic precursor for radial distances between 

6.34 ft and 16.83 ft.  The wave front traverses this dis- 

tance during the time interval of approximately 0.75 to 4.0 

msec.  It is difficult to detect such detail in the SRI re- 

cordings and the precursor appears to be absent from the 

recordings of the closer GRT gages.  One explanation for this 

is a strong noise signal present in all the measurements.  The 

signal was caused by the electronic circuitry and persisted 

from 0.4 to 1.7 msec (see Fig. 2.27).  In subtracting out this 

signal it is possible that the detail required to resolve the 

precursor was losL when the front was located in the time 

interval affected. 
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Fig. 2.21--Predicted (May 8 Run) and measured 
(SRI) stress histories at R = 3.27 ft and 3.35 
ft respectively. 
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Fig. 2.22--Predicted (May 8 Run) and measured (SRI) stress 
histories at R = 4.57 ft and 4.46 ft respectively. 
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Fig. 2.23--Predicted (May 8 Run) and measured 
(SRI) stress histories at R = 5.51 ft and 
5.63 ft respectively. 
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Fig  2 24--Predicted (May 8 Run) and measured 
(SRi) stress histories at R - 6.34 ft and 
6.45 ft respectively. 
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Fig. 2.25--Predicted (May 8 Run) and measured 
(SRI) stress histories at R = 7.67 ft and 
7.70 ft respectively. 
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Fig. 2.26--Predicted (May 8 Run) and measured 
(SRI) stress histories at R = 7.67 ft and 
7.83 ft respectively. 
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The agreement between the predictions and the measure- 

ments is quite good.  The results significantly reinforce 

our confidence in ground motion prediction calculations for 

energy sources in NTS tuff.  The success of the test, like 

the earlier Hudson Moon HE tests.[ 9l required a careful 

integration of the theoretica: and experimental parts of the 

program with the actual field measurements.  There was even 

less laboratory test data available from the Mine Dust HE 

site and yet the calculations were successfully carried out 

to predict stress attenuation to lower amplitudes.  This was 

accomplished by relying heavily upon the TAMEOS equation of 

state routine which included a treatment of irreversible 

void collapse. 

Subsequent to the Mine Dust HE test, Terra Tek has 

generated much more complete test data on the core samples 

drawn from near the WP.  This includes uniaxial strain data 

and triaxial tests in which proportional loading was imposed. 

It would be of interest to use this new information to con- 

struct a more complete model of the deviatoric behavior of 

the medium and to repeat the calculation.  In a related 

current study at S3. Cherry, et al.[1 J are conducting a 

series of spherical SKIPPER calculations in which the crushup 

parameters used in TAMEOS are varied.  These calculations, 

for a buried nuclear source, are designed to determine the 

sensitivity of the ground motion at remote distances to the 

overburden pressure at the energy source and the details of 

the crushup model. 

[15] 
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2. 3 SURFACE LOADING PARAMETER STUDY 

The Mine Dust HE results give us some confidence that 

in soft rock media an integrated theoretical-experimental- 

field test program can lead to successful predictions of 

ground motions for buried spherically symmetric sources.  It 

is apparent, however, that the problem is more difficult in 

the case of near surface energy sources since both energy 

coupling and cratering processes are multi-dimensional, 

and they require a wider range for the material response 

models.  For some applications, such as assessing the vulner- 

ability of deep underground structures, the problem is alle- 

viated since interest is focused on material within a cone 

centered belov; the burst point.  In this case the details of 

the cratering process should have a second order effect on 

the stress pulse propagated to the structure, but the impulse 

carried downward with the pulse must offset the total back- 

ward momentum carried by the debris thrown out of the crater. 

To assess the effect of water vaporization the PEQ 

version of TAMEOS was used in the planar SKIPPER code to 

calculate the time history of 400 kbar and 550 kbar pressure 

pulses in a 17 percent water-mass-fraction tuff.  In order to 

see the effect of water vaporization, explicitly treated in 

TAMEOS, comparison is made with calculations using a Mie- 

Gruneisen analytic equation of state which approximates 

TAMEOS at high pressures but does not allow for the large 

expansions of the water on release.  Comparison of Ilugoniot 

points in the shock-particle velocity plane is shown in 

Fig. 2.36. 

For the analytic approximation the thermodynamic 

derivative 

(H), Gp (2.18) 
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600 kbar 

Us ■ 2.80 ♦ 1.225 Up (Up > 1) 

Us = 1.90 • 3.025 U  - 0.90 Up2 (Up < 1) 

• TAMEOS Hugoniot Points 

U  (km/sec) 

Fig.   2.36--Ilugoniot   for  saturated  wet   tuff with 
water mass   fraction of Mw =   171. 
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is taken to be constant (it isn't, of course, for the tabu- 

lated PEQ states) so that the equation of state is 

P = G p E + Pn(V) 
0  0        I1 

1 - 
G P 
-H- (v V) (2.19) 

The value G p  = 1.0 is representative of values calculated 

from high-pressure points in the table.  For release states 

with V > V , the Hugoniot was extended to negative pressures 
o 

with the rather abritrary straight-line fit 

U = 1.90 + 0.717u, u < 0. (2.20) 

In the runs the left boundary was loaded with a 20 ysec 

flat-topped pulse.  The loading was ramped up with a cosine 

function 

P(t) 
£   0 

1 - C os (6 t < 6 ysec (2.21) 

The load pressure was maintained at the maximum value 

P  (= 400 and 550 kbar) until t = 20 ysec and then released 

to 0.1 kbar in 6 ysec with another cosine function. 

Figure 2.37 is a plot of the PEQ Hugoniot for the 

saturated mixture and a comparison of the release adiabats 

from 550 kbar as obtained from TAMEOS and the analytic equa- 

tion of state.  The analytic adiabat agrees with that from 

the table (more or less) for pressures above 2 kbar but does 

not reproduce the large expansion due to water vaporization 

below 2 kbar. 

Figure 2.38 shows several particle-velocity profiles 

for a 550 kbar pulse after a travel of approximately 110 cm. 

For the TAMEOS calculation, about 24 percent of the mass that 

has been shocked has "rebounded", i.e., has acquired a nega- 

tive particle velocity.  For the analytic equation of state, 
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Fig 38--Particle velocity profiles propagated 
from 550 kbar pulse in saturated tuff 
(M = 171) calculated using indicated 
mouels. 
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about 21 percent of the shocked mass has a negative velocity. 

The big difference is in the velocity acquired by the first 

few zones, the maximum negative velocity for the TAMEOS 

calculation being about twice that calculated with the analytic 

equation of state.  Also shown in Fig. 2.38 is the extreme 

case of the velocity profile calculated with the analytic 

equation of state with (9P/9E)V  set equal to zero.  In this 

case, the release adiabat coincides with the Hugoniot, and the 

magnitude of the velocity acquired on release is not large 

enough to give a rebound.  It will also be noted that the 

maximum particle velocity at the head of the pulse is higher 

for the TAMEOS calculation than for the analytic ones.  This 

is to be expected, since the 20 ysec pressure pulse at the 

left interface puts a fixed amount of positive momentum into 

the material.  Hence the model which has acquired the largest 

amount of negative momentum in release must also have a larger 

amount of positive momentum in the lead part of the wave. 

Figure 2.39 shows several pressure profiles for the 

550 kbar pulse after a run of about 110 cm.  The peak pressure 

in the TAMEOS calculation is higher than that calculated with 

the analytic equations of state.  Figure 2.40 shows several 

pressure profiles for a 400 kbar pulse.  Here the effect of 

initial porosity is more pronounced than in the velocity 

profiles. 

Figures 2.41 and 2.42 are plots of the peak pressure 

in the pulse as a function of run.  In all cases the rate 

of pressure decay as calculated with the TAMEOS scheme is 

significantly less than that calculated with either of the 

analytic models.  For a nuclear surface burst the loading 

pressures are much greater and the enhancement of the stress 

pulse amplitude by the water vaporization would correspond- 

ingly be greater. 
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Fig.   2.41--Peak  pressure   attenuation  curves   for  pres- 
sure  pulse  propagated   from  550  kbar  pu^   o   in 
saturated  tuff   (M     =   17%)   calculated  using 
indicated  models. 
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in wet tuff (M  ■ 17%)   calculated using in- 
dicated modelswand porosities. 

79 

ii -- j 



, .,<», .,..,....,...,., —       —,  

PRiäCEDIND PAGE BLANK-NOT FILMED 

TTI.  A TWO-PHASE EQUATION OF STATE MODEL FOR GRANITE 

An equation of state for granite in which the phase 

chnnge at high pressures is treated explicitly was used lith 

the  one-dimensional SKIPPER code to investigate the possibility 

that this phase change can have important effects on the 

attenuation and profiles of pressure in granite. 

3.1    TWO-PHASE MODEL 

The experimental shock-particle velocity data of 

McQueen et al. *-17' for Westerly granite are shown in Fig. 3.1. 

The data with U  > 2.3 km/sec are fitted within experimental 

error by the straight line 

U = 2.103 + 1.629 U 
s p 

(3.1) 

and are assumed to represent equilibrium states for the 

high-pressure phase.  The lower pressure points presumably re 

present mixtures of the high and low-pressure phases; and the 

assumptions used in developing the present two-phase model 

would indicate that they are not points of thermodynamic 

equilibrium. 

The Hugoniot for the low-pressure phase is taken as 

the straight line 

U = 4.50 + 1.25 U 
s p 

(3,2) 

(velocities in km/sec).  The zero pressure "bulk" sound 

speed of 4.50 km/sec is for the "compacted" state and was 

obtained by extrapolating the longitudinal sound velocity 

data of Birch ^18 •'and the shear velocity data of Simmons119-1 to 

10 kbars to zero pressure (see Ref. 20).  The above value 

together with the slope of 1.25 give P - V points which are 

compatible with the hydrostatic data of Stephens L^-L J Tor NTS 

granodiorite to 40 kbars. 
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Figure 3.2 is a plot of the experimental data in the 

P - V plane, along with the phase lines and the low-pressure- 

phase Hugoniot used in the present model.  Also shown in Fig. 

3.2 is a "motastable" Hugoniot for the high-pressure-phase 

centered at zero pressure and room temperature.  This meta- 

stable Hugoniot was calculated in the following manner: 

The zero-pressure, room temperature density of the 

high-pressure phase was taken as  p  = 3.90 gm/cm3 after 

Dairies and Anderson1  J, who obtained this value by making 

a fit of the experimental high-pressure-phase points to the 

Birch-Murnaghan equation subject to the restraint 

p  (gm/cm3) ■ 0.049 M^1/l, 
0 0 o 

where  M  is the mean atomic weight and 

*$). 

in (km/sec)2 is the square of the zero-pressure bulk sound 

speed, the resulting value of which is 

i  = 57(km/sec)2. 
o 

Each experimental P - V point was then converted to a point 

appropriate to centering at  P = 0, p 

the relation 

3.90 by means of 

P' ■ 11 T(7)(v. -V)iMY)(E 0 0 E) 0 / 

h - 7 (I) K. - v)l 

(3.3) 

(3.4) 

where P' is the pressure of the metastable Hugoniot at the 

specific volume V and G is the Grüneisen ratio. In this 

calculation 

8 3 
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Fig.   3.2--Illustration of  the  two-phase model  used 
to  fit  the  experimental  llugoniot  data. 
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G 
^7 mv 

was assumed to have the constant value 2.63 (a zero-pressure 

Grüneisen ratio of 0.67 for the high-pressure phase); and the 

zero-pressure energy difference between the high and low- 

pressure phases was taken as 

E  - E 
0 0      0 

0.8 x 1010 erg/gm. 

(after Ahrei.s f23 ^ . The calculated values of PH are not 

particular!/ sensitive to the exact value of this energy 

difference.  The resulting PH - V points were then converted 

to  U  - U  points and the resulting least-squares straight- 
s   p  ' 

line fit is 

U = 7.55 + 1.134 U, 
s p' 

(3.5) 

where the intercept was constrained to have the value 

U  (Un = 0) = /J~ ■ 7.55. 
s ^ P    '     Q 

To summarize, then, the Ilugoniot for the low-pressure 

phase is taken as 

Us = 4.50 + 1.25 U   (LPP) 

with     p     ■  2.63 gm/cm3,   and   ;he  Ilugoniot  for  the  high-pressure 
o 

phase   is   taken as 

U     =   7.55   +   1.134  Up     (HPP) 

with     p       =   3.90  gm/cm3. 
o o 
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There appears to be no direct experimental work on the 

pressure-temperature phase line for the granite transition. 

However, granite is about one-third quartz, and the experi- 
[24 I 

mental work of Akimoto and SyonoL  Jon the quartz ♦ coesite ♦ 
stishovite transformation gives the result 

P(kb) = 69 + 0.024T(oC) 

for the coesite-stishovite transformation, or 

^ = 24 bar/deg. 

Now, if one assumes a Grüneisen ratio of 1.0 for granite, then 

(|£)  = pCvG s (2.6)(0.8 x 107)(1.0) 
v  ' v 

s 20 bar/deg. 

which is close enough to the slope of the coesite-stishovite 

phase line that a vertical phase line in the P - V plane for 

granite was considered to be a reasonable approximation for 

the present purpose (see Fig. 3.2).  The right phase line 

is located at  V = 0.9 V0  and intersects the LPP Ilugoniot 

at a pressure of 69.6 kbars.  The left phase line, for 

simplicity and for lack of other information, is assumed 

to be vertical also.  It is located at a volume V = 0.249 

cmVgm, so that the volume change for the transition is 

AV = - 0.093 cm3/gm. 

The use of the Clausius-Clapeyron equation 

dP   AS 
3T '• Ä7 

86 

  UM-, ■—- ■ .--'---.^ J 



p"M   ■ ■"' t m^^^^mmmmm**™ «mim   ■--«.... i.«.   i i.     I>I>I     .■ ^mmmmimmmmmmmmmm m^—m* mm 

gives the value 

AS = - 0.233 x 107 erg/gm/deg 

for the entropy change of the transition.  Equating the change 

in the Gibbs free energy to zero, 

AG = AH - TAS = 0 

gives 

AE = 5.74 x 109 erg/gm 

for the difference in the internal energy of the two phases 

at the phase lir?.  If the value for the internal energy of 

the low-pressure phase is taken to be zero at  P = 0,  Po = 

2.63, then the value of the internal energy of the high- 

pressure phase at  P = 0,  p  = 3.90 is 

E  = 0.68 x IQ10 erg/gm. 
o o 

It will be noted that this value differs from the value 

0.8 x 1010 used in computing the metastable Hugoniot, but 

not by so much that it was considered necessary to recompute 

it. 

The Mie-Griineisen equation of state is used to complete 

the thermodynamic description of the two phases, 

p - pHm * (£) (E - EH(V)) . (3.6) 

and the present model uses the following assumptions 

8 7 
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a)  The thermodynamic derivative 

(?) = (H) 
is independent of temperature and volume and has 

the same numerical value for both the LPP and the 

I1PP. 

b) The specific heat at constant volume, Cy, is also 

independent of temperature and volume and has the 

same value for each phase. 

These assumptions are compatible with the requirement that 

the Gibbs free energies of the two phases be equal at all 

points on the phase lines, which in this model are vertical 

in the P-V plane.  The numerical values used are 

C  = 0.795 x io7 erg/g/deg 

and 

(||)v ■ 2.63 g/cm 

which  corresponds   to  a  Gruneisen  ratio  of   1.0  at  the   foot  of 

the  LPP  Ilugoniot   and  a  value  of  0.67   at   the   foot  of  the  !IPP 

llugoniot. 
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3.2 INCORPORATION OF THE MODEL INTO THE SKIPPER CODE 

In the SKIPPER code the task of the equation-of-state 

subroutine is to compute a hydrostatic pressure from given 

values for the specific volume V  and the specific  internal 

energy  E.  If only a single phase is present, this is easily 

accomplished with an analytic equation of state, 

P ■ f(E,V) . 

However, when two phases are present, each phase will have 

its own equation of state, 

P  - f  (E ,V ) 
i    iii 

P  - £  (E ,V ) 
2      2     2   2 

and the task is to calculate the pressure given the specific 

volume V  and the specific internal energy  E of the 

mixture.  In the following discussion the subscript  I  will 

denote the phase which is stable at low pressures and room 

temperature (LPP) , and the subscript  2  will denote the 

phase which is stable at high pressures (HPP) . 

3.2.1  Interpolated-Pressure Method 

A first series of exploratory calculations was done 

with a subroutine which calculated an approximate pressure, 

the only requirement being pressure equilibrium between the 

two phases in the mixed-phase regime.  (A method which in- 

sures temperature equilibrium as well is described in the 

next section).  The first step in this method is to compute 

an equilibrium pressure from the given values of V  and  E, 

i.e., the pressure which would exist if the mass fraction  f 

in the HPP were the equilibrium value.  In this equilibirum 

calculation, if the volume  V  is larger than Viph  (the 

specific volume of the low-pressure phase at the right phase 
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line) the llugoniot for the LPP is used together with the 

equation of state, Eq. (3.6), to compute the equilibirum 

pressure.  If the volume V  is less than V^ , the 

Hugoniot for the high-pressure phase is used to compute the 

equilibrium pressure.  If the volrme V  is such that 

V , < V < V ,, then for equilibrium, 
aph       ipb' 

V = ^ - V ^Ph + 'eq V2ph 

^ = ^ - £eq) ^ph + feq E
2ph 

(3.7) 

fraction in the high-pressure phase, wnere  f   is the mass 
and the subscript ph  indicates evaluation on the appropriate 

phase line, 

the relation 

Solving the first of these for feq and using 

F    = F   + 
iph   Ih mi tp PH^ 

in the second, where  EHi  and  PHi  are the LPP llugoniot 

energy and pressure at the right phase line, gives for ...■ 
equilibrium pressure in the mixed phase region 

V - V 
P   = Pn eq   II m V E - E II AV 

& AE (3.8) 

where 

av    aph    iph 

AE E ph Ph ' 

If a finite amount of time is required for the trans- 

formation from one phase to the other, then the mas. fraction 
f in the HPP will not necessarily be the equilibrium value. 
With this interpolated-pressure method, depending upon whether 

90 
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the current value of  f  is larger or smaller than the 

equilihrium value, the pressure is weighted linearly away 

from the equilihrium value towards the pressure of the 

appropriate phase.  For example, if V were such that 

f  = 1/2, and the current value of  f  is 1/4, the pressure eq 
is taken as half way hetween the equilibrium value and the 

pressure of the LPP at the same volume and energy. 

The calculation of the mass fraction  f  in the HPP 

will he discussed after a description of the pressure-tempera 

ture equilibrium method in the next section. 

3.2.2  Pressure-Temperature liquilibrium Method 

Subsequent to the first series of exploratory calcula- 

tions, the interpolated-pressure method was replaced with a 

subroutine which, although requiring a longer execution 

time, satisfies the requirement that the pressures and 

temperatures of the two phases be the same in the mixed 

phase regime. 

Assumption  a) of Section 5,1 allows the pressure of 

each phase to be written in terms of its specific volume and 

specific internal energy as follows 

(V ) * 
1  1 m E1!,(V (3.9) 

P., (V ) ♦ 
112    2 ß) (V ) 

12    2 
(3.10) 

In  the  above  expressions.   P.,   (V   )   is   the  pressure  on  the  LPP 

llußoniot  centered  at     P     =   0     and     V     =  V     ,   and     I;IT   (V   )     is 
1 110 Hi] 

the specific internal energy of the pure LPP for a state on 

its Hugoniot, 

L,, (V ) = L  + 4 (V 
ill    1 10     *     10 

- V ) P  (Y ) 
i   "i  i 

(3.11) 
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Similarly, P,, (V ) is the pressure on the HPP Hugoniot 
112    2 

centered at the (metastahle) state P  = 0 and V^ = v20 » 

and 

lb   2        2 0      ^     2 0 
I (V   - V ) P.. (V ) 
2?0       2     112    2 

(3.12) 

Assumptions  a) and  b) imply that 

(S)„ ■'($)' V 

is also constant, so that the temperature of each phase can 

be written as 

T, ■ WV •(B)cr \ - 'Wl (3.13) 

■. ■ W ¥irs) 4 P.. (V ) 
112   2 

(3.14) 

where  T„ (V )  and  T,. (V )  are the temperatures on the LPP 
Hli 112  2 

and HPP Hugoniots respectively as a function of specific 

volume. 

For a mixture of the two phases in pressure and tempera- 

ture equilibrium, Eqs. (3.13) and (3.14) require that 

W " (vK W = 'H.^.
5
 " (rtaWV      (3-15) 

as one connection between the specific volumes  V  and V^. 

Another connection is (valid for any model) 

(1 - f) V  + fV  - V, 
1 2 

(3.16) 

where  f  is the mass fraction in the HPP, and V  is the 

specific volume of the mixture.  Thus, if V  and  f are 
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specified, Eqs. (3.15) and (3.16) determine V  and V^ 

the specific volumes of the LPP and the HPP.  The numerical 

procedure used to solve for V  and V  will be described 
r 1 2 

below. 

The specific internal energy  E of the mixture is 

1 to the spec 

the LPP and HPP by 

related to the specific internal energies  E  and  E^  of 

so that 

(1 - f) E  + fE  = E, 
1        2 

E  = E - f(E  - E ) . 
1 2       1 

(3.17) 

(3.18) 

Equating the pros ares of the two phases as given by Eqs. 

(3.9) and (3.10) gives 

(&) CE. D,' ■ PH, 
pn2 

+ w (&)(* !1; v • (3.19) 

The  use  of  Eqs.   (3.18)   and   (3.19)   in  Eq.   (3.9)   then  gives   for 

the  pressure 

P   =   (1   -   f)P„   (V   )   ♦   fPn   (V   ) 
H, II 2 2 

(£)|t- a "W n wl (3.20) 

in terms of the specific internal energy  E  of the mixture 

and the values for  V  and V  as determined from Eqs. (3.15) 
1 2 

and (3.16).  Note that Eq. (3.20) limits properly foi the 

special cases f = 0 and f = 1. 

To summarize, the specific volume V  of the mixture 

is used in Eqs. (3.15) and (3.16) to calculate values for V^ 

and V .  These values together with the specific internal 
2 

energy  E  of the mixture are used in Eq. (3.20) to compute 
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the pressure.  This procedure assures that in the mixed phase 

regime the pressures and temperatures of the two phases will 

be equal. 

The determination of the mass fraction f in the 

high-pressure phase is a separate calculation.  All the 

calculations carried out so far have used the (overly 

simplified) rate law originally proposed by Horie. 

df 
It a eq f)/T (3.21) 

where  f   is the equilibrium value corresponding to the 

specific volume V and specific internal energy E, and T 

is an adjustable relaxation time which governs the rate of 

the transformation.  More nearly realistic (and complicated) 

models for the transformation rate are discussed by Johnson. 

3.2.3. Numerical Solution for V,  and V2 

[26] 

The following method for solving Eqs. (3.15) and (3.16) 

for V  and V  assumes that the Hugoniots for both the 
1 2 

HPP and the LPP are characterized by linear fits of shock 

velocity versus particle velocity 

U  = c  + s U 
S|     i     1 Pi 

U  = c  + s U 
S2      2      2  P2 

(3.22) 

The Hugoniot pressures are then given by 

P,, (V ) = P C 
1 (1 - s n ) 

2  2 
(3.23) 

P., (V ) = p  c2 
112   2        2 0  2 (1 - s n ) 

2  2 
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where 

V 
n
1 

= 1 ■ v- 
i o 

V 

2 0 

(3.24) 

The Hugoniot temperature for each phase satisfies the first- 

order differential equation 

dTH . c; T  = sc
2 ^l  

HrT-   'o H   C,r  ,-■,   ^„^ 3 V (1 - sn) 

(3.25) 

the solution of which is 

G n 
0 sc2   0 

TH = TH e + 07" e 
o v 

G n  n -G ^ 
f   e  0-^ J (1 sO 

d^ (3.26) 

where 

^.(i) 
is the Gruneisen ratio at the foot of the Hugoniot, and 

T   is the absolute temperature at the foot of the Hugoniot. 

The temperature as given by Eq. (3.26) is not a convenient form 

for numerical evaluation.  A form which is convenient is 

G n 
o 

Tn ■ Tn.e 
SC 

v  (l - sn)' 
l+An + An2  +ATI 

1 2 3 
(3.27) 

The coefficients  A , A  and A  are determined by sub 
12 3 

stituting Eq.  (3 27) directly into the differential 

equation, Eq. (3.25).  The result is 
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A - J (s + G ) 
1    4        o 

(2s + G ) (s + G ) - G s (3.28) 

(3s + G ) 
 o 
 315  

(2s + G )(s + G ) - G s  - yr 
n n        B •*     "^ 

G s 
(s + G ) 

o 

The series converges rapidly for the range of compressions of 

interest.  For example, for the LPP granite with 

U   = 4.50 x l]5 + 1.25U 
Si Pi 

an d  G  = 1.00, the values of the coefficients are 

A  = 0.5625 
i 

A = 0.14375 
2 

A  = -0.003385 
3 

and the error in the computed Hugoniot temperature as com- 

puted from Eq. (3.27) is less than 0.02 percent at  n  = 0.4 

(P   ~ 850 khar) .  If the value  of TH as computed from Eq. 

(3.27) is less than T.. , it is arbitrarily set equal to 
ll o 

TH.- 
The  first   task  here,   for  given  values  of     f     and    V 

is   to   find  the   roots  of  the   expression 

F(V   .  V )   i   (1   -   f)V     +   fV     -  V  =   0 
12 12 

(3.29) 

subject to the constraint 

(3.30) 
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The procedure adopted is an iterative one.  The zeroth- 

order approximation to  V  is taken as 

V(o) ■ V. 
i 

This value for V   is substituted in (3.30) which is then 

solved for V (see below), which will be the zeroth-order 
approximation M^0\     These values are substituted in (3.29) 

to obtain 

F (o)   F (V ^0 ^ , V ^0 ^) . 

Next, the first-order approximation to  V   is taken as 

v(i) = yd) + o.os 

Again, this value is used in Eq. (3.30) to solve for V^ , 

and Eq. (3.29) is used to compute 

1        2 

A linear interpolation (extrapolation) is made using the two 
(2) values  F*-0-'  and  FllJ  to find the value VoJ  which makes 

the interpolated (extrapolated) value of  F  equal to zero, 

Y (2) m   Y ^0 ^ - 1- ^0 ^ 
V (1) . Y(O) 

FCiJ . FUJ 

Equation   (3.30)   is  used  again  to  compute    V^2^,   and  the  new Eq 
value  F^2-1  is used in the above relation to obtain V 

The general form is 

(3) 

V (k) = v(o) . j.-U) 
v(k-0 . Y^^ 
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The process is continued until  v[k) differs from Vj 

by  as small an amount a? desired. 

For a given value of V^ , Eq. [2.50) Is solved by a 

separate iteration.  The second of Eqs. (3.23) is used for 

the left side of Cq. (3.30).  The solution of the resulting 

quadratic equation in  n2  is 

where 

P    c^ 
2 0      2 

ÜL 
(2gs     ♦  1) 

2 
/4gs     +   1 

2 

Kvj - (vKvs + (v)cvW\) 

(3.31) 

(3.32) 

The first time around,  g  is computed with T^CV^)  set 

equal to zero.  The resulting value of r^  from Eq. (3.31) is 

used to recompute  g, which in turn is used in Cq. (3.31) to 

recompute  n > etc. 
2 

The above described method of calculating the pressure 

utilizes simplifications which result from the fact that the 

phase lines are taken to be vertical in the P-V plane and 

that the specific heat Cy    and thermodynamic derivative 

C3P/3E)V are assumed to be the same for each phase.  The 

use of the vertical phase lines allows an immediate cal- 

culation of  f  • from only the volume of the mix for use 

in Eq. (3.21) in updating  f (mass fraction in the 11PP) . 

The calculation of  feq  for phase lines of arbitrary slope 

would also involve the pressure, through the dependence 

V   (P)  and V  h(P).  This can be handled but at the 

eipe'nse of introducing another iteration procedure and a 

longer execution time.  The equality of the specific heats 

and the derivatives (G/V) decouples the equations involving 

the specific internal energies  Ej  and  1^  of the two 
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phases from those involving the specific volumes  Vj  and 

V .  The result is the two simultaneous equations (3.15) and 

i;3.16) for the specific volumes; the internal energies  E^ 

and  E  are not calculated explicitly.  The general case of 

unequal specific heats and (G/VI ratios leads to four coupled 

equations in V , V , E  and E . A general iterative 
12     1 2 

procedure for handling this general case is described in 

Ref. [1], and could be incorporated in the future if 

sufficient experimental data were available to warrant it. 
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3.3 EXPLORATORY CALCULATIONS WITH PLANAR SKIPPER 

For driving pressures in the range from about 70 kbars 

to 280 kbars, the present two-phase model will lead to a two- 

wave structure.  A series of planar calculations using 

the interpolated-pressure method (zero shear strength) were 

made to test the code's ability to handle this phenomenon. 

Figure 3.3 shows the pressure profiles obtained for constant 

driving pressures of 150 and 300 kbars at the left inter- 

face.  For these runs the quadratic and linear viscosity 

coefficients were set at 1.6 and 0.4 respectively.  Aside 

from the spurious "ringing" the results are satisfactory. 

The 150 kbar driving pressure produces the required two- 

wave structure, while the 300 kbar driving pressure does 

not, also as required.  So far, for the equilibrium cal- 

culations (T ■ 0) it has not been possible to adjust the 

viscosity coefficients to eliminate the ringing completely. 

Also, in order to reduce the ringing to the level shown in 

Fig. 3.3 it was found necessary to introduce a fictitious 

sound speed in the mixed-phase region.  The reason is that the 

thermodynamic pressure increases very slowly with decreasing 

volume in the mixed phase region, according to this model. 

Consequently, the calculated sound speeds are small.  The 

sound speed is used in the calculation of the linear 

viscosity term, and the sudden jump in sound speed as a 

zone passed from the mixed phase region into the high-pressure 

phase region produced an intolerably rapid change in the vis- 

cous pressure term.  This undesirable effect was eliminated 

by using, in the mixed phase region, a sound speed which is 

a linear interpolation between a value characteristic of the 

low-pressure phase and a value characteristic of the high- 

pressure phase.  The remaining overshoot is presumably re- 

lated to the fact that the rate of change of thermodynamic 

pressure undergoes a sudden increase as a zone passes from 

the mixed phase to the high-pressure phase.  The P-T 
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equilibrium method uses a sound speed  c  for the mix 

calculated from 

2  2 PC1 p2c2   P
2
C
2 

11      2   2 

where  p  is the density and  c  and  C2  are the appropriate 

sound speeds in the LPP and IIP?  respectively.  This 
value for  c  is the "frozen" sound speed (constant f) and 

gives a smooth interpolation between the sound speeds of 

the LPP and 1IPP. 

The effect of varying and relaxation time  T  for a 

150 kbar driving pressure is shown in Fig. 3.4.  The pri- 

mary effect of the 1.0 ysec relaxation time (about three 

time cycles) is to reduce the spurious overshoot in the 

second wave.  The S.O psec relaxation time produces a pro- 

nounced smearing of the transition from the low-pressure 

phase to the high-pressure phase.  Also evident in Fig. 3.4 

is the characteristic decay of the "precursor" caused by 

the finite relaxation time. 

Figure 3.5 is a plot of several pressure profiles 

which are the result of loading the left interface to 300 

kbars for 40 usec and then releasing the pressure to zero. 

Comparison calculations with the same loading are shown for 

a single-phase equation of state (fit by Allenli-  ), the 

Hugoniot for which is shown as the dashed line in Fig. 3.2. 

The difference between the results with the two-phase model 

and the single-phase model is quite pronounced.  The initial 

decay of peak pressure for the two-phase model is extremely 

rapid because of the large sound speeds characteristic 

of the high-pressure phase.  Also, as the pressure in the 

lead part of the wave drops heloM   280 kbars, the two phase 

model develops the characteristic two-wave structure.  The 

"detail" in the lead part of the second wave is not real, 
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but is a result of the numerical difficulties already 

mentioned.  An additional feature of the two-phase model 

which is not present in the single-phase one is the occurrence 

of the rarefaction shock, which is clearly evident in the 

profiles shown in Fig. 3.5. 

Figure 3.6 is a plot of the particle velocity profiles 

which correspond to the pressure profiles shown in Fig. 3.5. 

The profiles are qualitatively similar.  It will be noted 

that the particle velocity after release for the two-phase 

model with 300 kbar loading does not go negative, as it 

does for the single-phase model.  This is because the P-V 

release curve for the two-phase model lies so far below the 

Rayleigh loading line (see Fig. 3.7). 

Figure 3.8 shows the effect of i 20 ysec relaxation 

time on the 300 kbar, 40 ysec pulse.  The long ..elaxation 

time wipes out the two wave structure on the lead part of 

the pulse. 
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Fig.   3.7-- Illustration  of  Hugoniot   and  release 
curves   for  two-phase  model. 
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3.4 THE TRANSITION RAT 

All the calculations carried out so far have used the 

rate law 

d£ _ ff 
at    (f 

eq f)/T (3.21) 

for the rate of transformation of one phase to the other. 

An estimate of the relaxation time  x was ohtained by trying 

to find a value such that the calculated transit time of a plane 

shock through a 1/4 inch thick sample of granite would be in 

agreement with the reported shock velocities of McQueen 
r 171 et al.   J  Two sets of experimental data points in the 

mixed phase region (see Fig. 3.1) were examined.  One set 

of four points corresponds to a shock velocity of about 

7.0 mm/ysec in the aluminum driver, and the other set of 

five points corresponds to a shock velocity of 7.7 mm/ysec 

in the drivfr.  From an  impedance match solution in the 

P-U plane, one finds that the first state in the aluminum p ^ 
driver would induce a shock pressure of about 215 kbar in 

the granite if it remained in the LPP and that the second 

state would produce a shock pressure of about 330 kbar in 

the LPP granite. The corresponding shock velocities in 

the pure LPP would be 6.2 and 6.8 mm/ysec respectively; 

while the actual measured shock velocities for a 1/4 inch 

thick sample are 5.5 and 5.7 mm/ysec. 

Figures 3.9 and 3.10 show calculated pressure pro- 

files at a sequence of times for constant driving pressures 

of 215 kbar and 330 kbar.  A relaxation time of x = 0.1 psec 

gives a transit time for the 215 kbar wave through 1/4 inch 

of 1.15 ysec, which corresponds to an average shock velocity 

of 5.52 mm/ysec for the lead part of the wave, a good agree- 

ment with the experimental value of 5.5 mm/visec.  The same 

value of T = 0.1 ysec for the 330 kbar driving pressure gives 
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a transit time of 1.07 ysec, which corresponds to an average 

shock velocity for the lead part of the wave of 5.93 mm/ysec, 

which is reasonably close to the measured 5.7 mm/ysec.  An 

increase of  T  to 0.25 ysec gives an average shock velocity 

of 6.27 mm/ysec for the 330 kbar wave through 1/4 inch, a 

value which is considerably higher than the experimental 

5.7 mm/ysec. 

These considerations, although rough, indicate that 

a value of about 0.1 ysec for  T  is appropriate for use in 

the rate law Eq. (3.21). 
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3.5 CALCULATIONS WITH SPIILRICAL SKIPPLR 

Finally, a calculatior in spherical geometry which 

had been done previously with a single-phase equation of 

state was repeated with the present two-phase model.  The 

single-phase calculation used a Mie-Gruneisen equation of 

state (constant G/V = 2.14 gm/cm3) and a single fit to the 

experimental Ilugoniot data.  Figure 3.11 shows a comparison 

of the Ilugoniot for the single-phase model with the IIP? and 

LPP Hugoniots used in the two-phase model.  The calculations 

are for a 20-ton source in a cavity with an initial radius 

of 40 cm; and both calculations used the same pressure- 

energy dependent yield strength model, the maximum radial 

stress deviator at high pressures and low energies being 

S  - Si    - »Y j    'max  :> 
2 kbar. 

The two-phase calculation was done using both the inter- 

polated-pressure method and the more elaborate P-T 

equilbrium method.  Both methods give essentially the same 

results for the calculated radial-stress profiles, as is 

indicated in Fig. 3.12. 

However, the calculated radial - stress profiles re- 

sulting from the single-phase model and the two-phase model 

are significantly different.  A comparison is given in Fig. 

3.13.  At a given radius, the peak stress as calculated 

with the two-phase model is about 30 percent less than that 

resulting from the single-phase model.  Also, the stress 

profiles resulting from the two-phase model are broader 

than those of the single-phase model, although the maxima 

coincide.  A comparison of peak radial stress as a function 

of distance for the two models is shown in Fig. 3.14.  The 

cavity radius, on the other hand, is the same for the two 

models (at least for the first two milliseconds).  Figure 
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Fig. 3.11--Comparison of the Hugoniot for a single- 
phase model and the two-phase model used 
in the spherical calculation. 
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3.15 is a comparison of the cavity radius versus time for the 

two-phase and single-phase calculations. 

These comparisons indicate that a realistic treatment 

of ground motion should include explicitly any possible 

phase changes.  Even though the maximum stress in the far 

field may not be large enough to cause the transformation, 

a phase change in the near field can have a large indirect 

effect in the far field because of the change in the 

effective source function. 
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IV.  GENERALIZED PLASTICITY MODELS IN 2D CRAM 

4.I   BACKGROUND AND INTRODUCTION 

Successful calcuations of ground motion for hard rock 

(e.g., granite) have proven to be much more elusive than for 

weaker rocks.  Inaccuracies in the preditions are primarily 

a consequence of using inadequate material models in the 

calculations, especially the practice of extrapolating in- 

tact laboratory specimen strength behavior to rock masses 

which contain planes of weakness in the form of joints, 

faults and weathered regions.  In Section VI preliminary 

results are presented from a study which has the objective 

of deriving a rational basis for the scaling relations be- 

tween laboratory to field data by considering the medium to 

contain regularly spaced joints or faults.  At the present 

time, however, the generally accepted approach is to derive 

constitutive models to describe the complex deviatoric stress 

strain behavior measured directly on laooratory specimens. 

The laboratory parameters can then be adjusted in some 

consistent manner, hopefully, when the model is used in 

computer codes to calculate field test phenomena.  Early 

attempts to match the velocity-time and displacement-time 

wave forms measured in granite were notably unsuccessful. 

The constitutive models employed neglected important 

physical effects and were based on incomplete malarial 

properties data.  Many of the hydrodynamic elastic-plastic 

computer codes used in these attempts employed the von 

Mises yield criterion to calculate the plastic deviatoric 
r 2 a   ^f) 1 

stresses.       J  Their technique was to multiply the 

deviatoric stresses that are calculated assuming elastic 

behavior by a common factor which insures that the newly 

calculated stress state lies on the von Mises yield surface. 

Cherry 
[31] has shown that this technique is equivalent to 

the associated flow rule as long as the von Mises criterion 
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is being imposed.  However, for more sophisticated yield 

criteria this method is not equivalent to the associated 

flow rule.  In 3SR-1071^ generalized plasticity models 

were developed that reproduce the complex deviatoric 

strength properties observed in laboratory tests and faired 

the model into a high pressure equation of state.  In each 

case, an associated flow rule for the deviatoric stress 

response was assume 1 in developing the flow law.  Generalized 

Mohr-Coulomb constitutive equations developed include one 

without work hardening, one with Isotropie worh hardening, 

and one with kinematic work hardening.  The Weidlinger 
r T 21 

cap model1  J was also generalized to treat the required 

range of pressure and strain.  The yield surfaces associated 

with these models are illustrated in Fig. 4.1. 

All four plasticity models were incorporated into the 

ID SKIPPER Lagrangian computer code as options.  The code 

was applied to compare the Hard Hat and Pile Driver ground 

motion measurements with the calculations obtained using the 

generalize! cap model and the kinematic work hardening 

model.^  1  It was found that the latter model yields ground 

motion calculations in much better agreement with field 

measurements than is possible with the cap model.  In fact, 

inclusion of the Bauschinger effect (kinematic hardening) 

reduced the velocity of the rarefaction waves so that 

unloading takes place more slowly.  The velocity pulse at a 

fixed station is also stretched out over a longer time and 

this effect caused the calculations to be brought into 

better agreement with tae measurements than had ever been 

possible in previous calculations which considered hardening 

to be Isotropie.  The presence of the Bauschinger effect 

has been clearly demonstrated by triaxial tests on competent 

granite specimens (e.g., Swanson   J. 
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Isotropie Strain Hardening 

Movable Cap 

Yield Surface with Movable Cap 

• Kinematic Hardening 

~o. 

Fig. 4.1--Hardening models 
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Tn Fig. 4.2a sample result of the SKIPPER Piledriver 

calculation for the generalized cap model and  he kinematic 

work hardening model are reproduced from 3SR-1071.  The better 

agreement with the displacement-time measurements that is 

achieved with the latter model is clearly demonstrated.  To 

match the field data it was necessary to reduce the flow 

stress from that measured on laboratory specimens. 

Both the kinematic work hardening and the Weidlinger 

cap plastic yield criteria have now been generalized to two 

space dimensions.  The mathematical descriptions of these 

plasticity models are formulated using the associated flow 

rule and, except for a few minor modifications, are con- 

sistent with the earlier work for one-dimensional continua. 

The effects of material porosity have been included.  Both 

models have been incorporated into the 2D CRAM Lagrangian 

computer code as options.  This computer code is able to 

treat two-dimensional continua in either plane or rotationally 

symmetric geometry.  The influence of material rotation on 

the stress behavior has been accounted for in the formula- 

tion.  The difference equations describing the conservation 

of mass, momentum, and energy have been presented many 

times^  '   '    and will not be repeated here. 

The plasticity models are applicable for a material 

with a moderate amount of porosity.  The procedure for 

incorporating porosity is to assume that the pressure is 

equal to the value indicated by the equation of state of the 

matrix material evaluated at the current matrix density and 

multiplied by the volume fraction of the matrix.  The matrix 

density, in turn, is determined from the average density by 

assuming that all of the plastic dilatation (or compaction) 

is due to porosity changes.  The derivation of the expression 

for the matrix density also includes a term which reproduces 

pure elastic behavior.  The use of a homogeneous equation of 

state for a porous material ignores the material substructure 

which is capable of scattering and dispersing waves. 
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In Section 4.2 the mathematical formulations for the 

generalized plasticity models and the Isotropie equation of 

state incorporated into CRAM are described.  A particular 

analytic form of the equations of state is used but the 

coding has been arranged so as to facilitate future changes. 

A different analytic form or a tabular form (e.g. TAMEOS) 

can be introduced without major modifications.  The develop- 

ments particular to the kinematic work hardening and Weid- 

linger cap models are described in Sections 4.3 and 4.4 

respectively.  Finally, in Section 4.5, results of a calcula 

tion with the latter model using the 2D CRAM code is shown 

to be in excellent agreement with a ID SKIPPER calculation 

for the same problem. 
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4.2 DEVELOPMENT  OF  MATHEMATICAL  MODEL 

4.2.1    The  Equation  oT  State 

The  equation of  state  defining   the   total  pressure 

P     is  assumed  to  be  of  the   following   form:* 

P  = 
V 
_i 

V 
in P     (V   ,E) 

mm (4.1) 

where V  and V  are the matrix and composite specific 

volumes respectively,  E  is the internal energy per unit 

mass, and the function  P  (V ,E)  may be thought of as the mm'      & 

equation of state of the poreless matrix material.  The 

matrix specific volume will be related to the state of 

strain in Section 4.2.3.  Representations similar to Eq. (4.1) 

have been used previously.  Analyses equating the pressure 

to  P  without the volumetric fraction multiplier are m r 

found in [12, 31, 33].  Whereas equations of state with a form 

identical to Eq. (4.1) are used in [ 3, 26 ] for crushable 

materials and in [ 3] for the Theory of Interacting Continua 

(TINC).  The analytic form of the function  P  presently being 

used is that found in [ -^ ] .  It is given by 

m a + 

ID 

m 

.     / 3ß A y\ 

sr ln a. * (1 " a.)e " ° ) 
n \ 

*   In the notation of Section 2.2.3, a = 
(2) 

V/V  and  n = 0 ' m 
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where  u  equals V  /V -1, V   is the initial matrix speci- n      mo  m    mo 
fie volume, and (a, d, E , B, ß , a ,A) are parameters de- 

0 0    0 

fining the shape of the equation of state function.  This 

equation of state has been incorporated into CRAM as a function 

sub-program and, therefore, can be easily changed.  Thus it 

follows that either the tabular (TA.MEOS) or the newly 

developed high pressure granite equation of state forms (see 

Section III) can be considered with a minimum amount of 

effort.  The partial derivatives of P  with respect to 

either V  or li which are required in the plasticity 
m 

calculations are obtained numerically in the following 

fashion: 

3P   P (V  + AV ,R) - PfV.E) 
m   mv m    m*     mv m* 

■ w 
m m 

4.2.2  Elastic and Plastic Strains 

As is usual in plasticity theory the total strain 

rate tensor e..  is separated into elastic and plastic 
1J      «e     ,  «P -. components denoted as  e.,  and  e..  respectively 

fore 

There- 
ij 

,    .e   .p 

ij   ij   ij 
(4.3) 

The elastic strain rates are assumed to satisfy Hooke's law, 

This relationship may be written as: 

, 

S. . = 2yec. + -^ ij    M IJ    AT (4.4) 

where  S .  and e.   are the deviatoric stress and strain 
ij      1J . 

tensors,  y is the elastic shear modulus, and  A../AT are 

the corrections due to material rotation divided by the time 
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step used in the numerical integration.  The terms  S..  and 

e.   are related to the stress tensor a..  and strain tensor 

£..  by the following relationships. 

iJ 
o • U 

\k 
iJ 

-kk 6. . 
ij 

where 
lj 

ij   lj   3 

is the Kroneker delta function and double sub 

scripts denote summation.  The shear modulus appearing in 

Eq. (4.4) is actually a composite property and thus, in 

general, is a function of the matrix volumetric fraction. 

However, in the present formulation \i     is taken to be a 

constant.  The stress correction terms are included in 

Eq. (4.4) in a form consistent with the values calculated in 

CRAM.  These terms can be found in [28] and were originally 
K wiu-   [29] given by Wilkins. L  J 

The yield function may be represented as 

f ■ f(aij,Y) 

where  y  is some hardening parameter.  The material is 

elastic when  f < 0  and plastic for  f = 0.  When plastic 

flow occurs the associated flow rule l  J relates the plastic 

strain rate to the yield function.  This relationship is 

given by 

•P   . 9f 
e . .  = AT—— 
ij    9a 

The multiplier X  appearing in the above equation is 

determined by utilizing the fact that f equals zero fov 

plastic behavior.  The derivation of expressions for  X 

(4.5) 
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will be discassed in detail for the kinematic work hardening 

and Weidlinger cap yield functions in future sections. 

4.2.3 Matrix Volume Governing I-quation 

A concept usually introduced in metal plasticity is 

that the plastic dilatation is zero (compaction may be 

thought of as negative dilatation).  However, when dealing 

with porous media some plastic volume change does occur 

due to pore deformation.  An expression relating the matrix 

volume to the state of strain in the continuum will be de- 

rived by assuming that all of the dilatation is due to the 

change in void content.  This expression will be modified 

by a term which better correlates elastic behavior. 

The continuity equation may be written in terms of 

specific volume and strains in the following manner 

V 
V = £ii 

:e + -P 
eii    eii- (4.6) 

One expression relating the matrix specific volume to the 

state of strain and analogous to the above equation is given 

by 

m _ *e 
V   eii m 

(4.7) 

I-quation (4,7) follows from the assumption that when 

the change in dilatation itit)   is entirely plastic, matrix 

specific volume does not change and the change in composite 

specific volume must be due to the change in porosity content. 

This description of purely plastic behavior will be maintained 

in the final expression for V .  An expression identical to 
in [31 

Eq. (4.7) has been presented by Cherry1"  ' and an analogous 

expression relating the matrix volume (not its derivative) 

to the elastic strains is used by Dienes 
[33 ] 1   J  It should 

130 

- ,-- ■-  L ■- — - -■ 
■j*'-*°—--^—-   _ 



■■ "<*'">t**r^mm*mmmam -^-r"w^(F—^^^^^p^^" 1 •~m~^^^^m^^mt*'^^l^~<mmm-m^*^^^m 

f  1 

also be noted that in Ref. 3 7 the pressure is a function 

of e . . 
ii 

and  thus   is  essentially  following  this   same 
approach. 

The purely plastic behavior of Eq. (4.7) having now 

been deemed satisfactory, its pure elastic behavior will be 

examined.  If V  is the porosity specific volume (equals 

V - V ) and *eP. equals zero, Eqs. (4.6) and (4.7) yield 

V V 
m   p 

V " V m   p 
(4.8) 

Thus for elastic behavior the relative changes in matrix and 

porosity volumes are equal.  However, if one utilizes the 

hollow sphere as an analog for porous materials a phenomenon 

different from Eq. (4.8) is indicated.  For a hollow sphere 

with the stress-free state characterized by V   and Vp 
'o        .0 

and subjected to a uniform external pressure, the porosity 

and matrix specific volumes satisfy 

V m 
/v. 

V 
111 

v. (4.9)' 

where  ß  is a function of the matrix Poisson ratio 

and is defined by 

m 

ß = 
1 - 2v 

3   r 
in 

m 

Differentiating Eq. (4.9) yields 

* See Illustration 4.1, Description of Eq. (4.9) 
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ILLUSTRATION 4.1 

DESCRIPTION OF EQUATION (4.9) 

Consider the hollow sphere of internal radius  a  and 
external radius b subjected to an external pressure p. 
In its undeformed state the total volume, matrix volume, and 
void volume are given by 

7rb: T ^(b'-a3; «,.« 

After applying p, the internal and external radii become 
a + Aa and b + Ab, respectively.  For elastic behavior 
b >> Ab and a >> Aa, therefore the deformed volumes become 

V     -   4Ttb2Ab 
o m 

•4Ti(b2Ab   -   a2Aa) 

V    ■= V       -   4TTa2Aa 
P P. 

r ■to ] 
From Roark1  J,  Aa and  Ab  are given by 

Aa Pf 
3b; 

.2(b3-a3) 
U-v) Ab " P B 

*  Zb3 *  vCa'^b3) 

zcb3^1) 

where E and v are the matrix Young's modulus and Poisson's 
ratio.  Substituting these expressions into Vm and Vp 
yields 

m 1 . 3P ^2- (1 - 2v) 
mo Po mo 

Therefore 

- 1 -Ö 
fc-) 

where 

i  l-v 

13, 
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m P 

7 (4.10) 

Eliminating Vp  from Eqs. (4.9) and (4.1) yields 
o 

V  r       v- m 

in 

m 
1   (1 -ß) ^ 

m *? 

Therefore for V  in the neighborhood of V   the relative 
m mn 

change in matrix specific volume equals  ß times the relative 

■ porosity change.  For the hollow sphere analog and 

equal to  0.25,  ß  equals 0.44. 

The following expression relating the change in 

matrix specific volume to the state of strain is postulated 

as a replacement for Eq. (4.7).  It is: 

V = m 

e 
V eii 

T + V - V 
1 +  o   m 

"ßV m 

or, with F' 

V   - Vm o   m 
1 * 0- w: m 

Vm ■ 3' Vef. m       ii (4.11) 

where VQ  is the initial volume.  As can easily be deter- 

mined either Eqs. (4.7) or (4.10) are reproduced when the state 

of strain is purely plastic or elastic respectively. 

The hollow sphere analog represents a simple minded 

approach to a very difficult problem.  In general, the 
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expression for  B  is considerably more involved and, like 

y, is a function of the matrix volume fraction.  A more 

general approach may be found in Hashin[39J.  In the present 

analysis  ß  is taken to be a constant.  It should be 

mentioned that the value of V^  used in Eq. (4.11) equals 

the initial matrix specific volume only for the first load- 

ing cycle.  Upon unloading and reloading this value should 

be interpreted as the most recent stress-free value. 

An equation required for plasticity calculations will 

be introduced at this time.  If J   is the first stress 

invariant  (oKK)  and equals -3P, then ^  follows from 

Eq. (4.1) .  It is 

/P   V  9P \ 
(mm  m 1 A 

V P     V  9P 
m m A   m  m A 
—T- V + — -3E E 

Replacing  V  using Eq. (4.11) yields 
in 

J  = -3 
!(■ m 

V P m m 
V  3P m  m £ (4.12) 
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4.3 KINEMATIC WORK HARDENING MODEL 

The concept of kinematic work hardening was originally 

introduced by Prager^4C^ and is consistent with Drucker's1 

work hardening definition.  The yield surface in general is 

some function of J and translates in stress space without 
i 

a change in shape according to the plastic strain history. 

The shape of the yield surface is defined by 

7 ij ij 
1/2 - g(0 (4.13) 

where the function g represents the shape of the yield 

surface and S..  are related to the deviatoric stresses by 

ij   13   ij 
(4.14) 

The tensor a- .  represents the translation of the yield 

surface and, if linear hardening is assumed, is determined 

from 

«ij = beij 
(4.15) 

where  b  is some constant.  Therefore for kinematic work 

hardening, Eq. (4.5) becomes 

HJ ■ Ig ^ij " ^  *'  hP (4.16) 

where  g' = ij—.  The multiplier  A will now be determined. 

Differentiating Eq. (4.13) yields 

S. .S. -   =   2g  g' J 
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Replacing  e..  in Eq. (4.12) using Eqs. (4.3) and (4.16) and 

substituting the resulting expression for J  into the 

above equation yields 

ii i] 6g g' 
3P 

P  + V 
\  m        m 3 

■ 

m 
)B- c^i ♦ 3Xg') 

V P V  3P 

V2      V  9L 
(4.17) 

Another expression for S". .S". . may be obtained from Hooke's 

law.  Using Eqs. (4.14), (4.15), and (4.10) to eliminate  S^. 

and e..  from Eq. (4.4) yields 

A.. 
^. ... 2P4.. - (| .„) t^rtf- 

Multiplying this expression by S^,     and using ^j^jj " 2g' 

leads to the following expression: 

Sij^ij ■ riuh) - cb + 2y)Ag + ^r1 (4.18) 

Equating  the  expressions   for    Sj.5^     given  in Eqs.   (4.17)   and 

(4.18)   yields   the   following  expression     X.     It   is 

A. .^. . 
X  =   (2\ie.,'S..   +     1J

A^
1J   ♦   6g  g 

1J   iJ AT 

' ap  \ 
P ♦ v   ,JU ß'e.. 

m       m  9V   / ii 

V  P V     9P 

V 
g(b+2u)-18g  g "(vv.iy 
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The g  function used in this study is described by Dienes 

and is given by 

[33] 

K T   +  (T 
0       1 

T )e 

0 J 
i i 

where  r , T  and TI  are parameters defining the yield 

surface shape.  The specific form of this function can, of 

course, be easily changed. 
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4.4   WEIDLINGER CAP MODEL 

[32] . 
The yield surface of the Weidlinger cap model1    is 

composed of two parts.  One being a surface fixed in stress 

space (g ) and the other being an elliptical cap (gc) which 

is tangent to  g .  The cap portion moves outward in res- 

ponse to plastic deformation.  The main advantage of cap 

models is that they reproduce the dilatation seen at low 

pressures and the compaction observed at high pressures. 

The yield function is defined by* 

f = i S..S. . 
Z Ij 13 

1/2 - g(J .K) (4.20) 

where 

>p' for  J > J  c 
i   it 

gc, for   J <   J   r 
1 —  II 

The term J r is related to the plastic history by 
11 

wK 

where w  is a constant and the hardening parameter K is 

determined from 

(gp - gc) ^ij eij (4.21) 

*  The following analysis concerns a particular cap model. 
However, these same techniques can easily be applied to 
alternate versions of this yield model such as the one 
found in Ref. [42] • 
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The fixed and cap portions are defined by 

g   (J   )   =   T     +   (T     -   T   )e &p ^   i y o i o 

3  J 
i   i 

and 

gcGVK) i - py 
where    Q,   Jc     and    R    a re functions of K and are given by, 

Q = g^ (1 + R2gp2) 

Jc = JiF + R gF ^F 

t        ß wK 

R = iR e    , R e 
( o        o 

minimum 

(T , T , ß , R , and ß ) are parameters, and gF and gp 
0     110 2 

are defined by 

gF = V^F3 

3g 

si = TT 

(Ji = JIP) 

The determination of A  for the cap model follows a similar 

procedure as that seen in the previous section.  In fact, 

when the yield point is on the fixed portion the expression 

for X    may be obtained from Eq. (4.19).  Replacing S^  by 

S.., setting b = 0, and replacing  g by gp yields the 

appropriate value for  X  in this case. 

When the yield point is on the cap portion the pro- 

cedure for determining  A  is only slightly different from 

that used in deriving Eq. (4.19).  In this case, using Eqs. 

(4.5) and (4.20),  e?.  becomes 
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1 
eP.   = -i-  (S.•   -   2g    g'   6. .) (4.22) 

3gc 
where  g' ■ yy— .  Taking the time derivative of F  yields 

S. .S ■-S.. = 2g («c^ + ^k) 

Using Eqs. (4.12), (4.21), and (4.22), the above expression 

becomes 

S. .S. . = 2g  <- 3g 
ij ij    6c |   fa( 

9P 
P  + V ^ i m   m a 

m 

m 
e1^il+3X«c) 

V P     V  3P m m A   m  m A 
"^r v Mr ä^ • 

♦^cgp-^M^sg-^j (4.23) 

Hooke's   law yields 

A. .Sj 
S- .S.     =   2u(e. -S.      -   Ag   i       —-1.f- ij   ij M *•   13   ij acJ AT Xg.)    *   ^T^ (4.24) 

Combining Eqs. (4.23) and (4.24) yields 

A. .S. . 
A   =   {2ye. .S. .   +     X{J]   +   6   g  g' ■       ij   ij AT &cbc P    + v   ^)8^li 

o 

V  P V     9P mm,*,,     m      m f 
— V   +   —  3^ E k 3P 

2yg   -18g   g'2   P   +V    ««S     ß H6c       &cfec   \ m    m  9Vm / 

98 
28c IHT  (8p   "   8c'   (l *   38c2)1/2 

140 

(^.25) 

-■ -■ - -   ■  ■ - - - UMlMMil ■  '-'J 



w~~mmmmm ■ !■ IM» "■      M 

4.5 SUMMARY 

The equations developed in the previous sections 

have been incorporated in the CRAM code.  The procedure has 

been to retain as much of the original CRAM logic as 

possible and thus minimize errors.  The computation proce- 

dure in CRAM is to calculate the velocities, positions, and 

volume using the equations of motion and the continuity 

equation at time tn+1/2  and then calculate the stress 

state at time tn+1 using these new values.  This pro- 

cedure has not been altered.  Therefore the strain rates and 

volume terms appearing in the expressions for A  are 

evaluated at the time  t 

A typical comparison of the results of CRAM and 

SKIPPER calculations for granite may be found in Fig. 4.3 

The Weidlinger cap model with zero porosity is used with the 

values of the required parameters appearing in Table 4.1.  The 

geometry is a symmetric spherical cavity of radius 100 cm 

and the loading is a suddenly applied internal pressure of 

18 kbar.  Plotted in Fig. 4.3 is the pressure at a radius of 

105 cm as a function of time.  Plastic flow was initiated 

at approximately 7 ysec and continued throughout the run. 

As can be seen the correlation is excellent. 
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Fig. 4.3--Comparison of CRAM and SKIPPER Weidlinger cap re- 
sults for a suddenly applied pressure of 18 kbar 
on the inside surface of a 100 -cm spherical 
cavity.  Depicted is the pressure in granite at a 
radius of 105 cm versus time. 
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TABLE 4.1 

WEIDLINGER CAP AND EQUATION OF STATE PARAMETER 

VALUES (CEDAR CITY TONALITE) 

o 

a 
0 

B 

a 

d 

-1 

10.45 kbar 

0.49 kbar 

0.042 kbar 

4.0 

0.724 kbar 

0.029 kbar'1 

227.5 kbar 

518.0 kbar 

0.7 

180.0 kbar 

0.5 

1.3 

160.0 kbar cm3/gm 

J 
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V.     TINC   DEVELOPMENT AND  THE   POROUS  CODE 

5.1 INTRODUCTION 

A geologic medium generally consists of a rock or soil 

matrix containing cracks or pores that may be partially or 

completely saturated with water, and as such may be regarded as 

a geologic composite.  Such materials possess certain charac- 

teristics (wave dispersion, internal dissipation) which cannot 

be adequately modeled within the usual restrictions of homo- 

geneous, Isotropie media.  In applications where these charac- 

teristics are important, it is necessary to seek a description 

of the dynamic response in terms of the behavior of the iso- 

lated rock matrix and water components.  Reference to the de- 

tailed microstructure of the composite, however, must be 

avoided since the phenomena of interest are on a much larger 

geometrical scale.  The Theory of Interacting Continua (TINC) 

provides a framework general enough to allow explicit treat- 

ment of pore pressure effects and relative motion between 

the rock and water components.  This theory does not require 

the explicit consideration of the detailed microstructure. 

The microstructure is implicitly considered in specifying the 

various interaction terms. 

This theory was previously introduced in 3SR-267,^ 

3SR-678,[2] and 3SR-1U71[3] to model the behavior of geo- 

logic composites.  In particular, a thermodynamic model was 

presented in 3SR-1071.  This model was incorporated into the 

POROUS (ID spherical and planar) code.  During the past 

year, the prime objectives have been to (1) refine 

constitutive relations and (2) further develop the POROUS 

code.  Since the conservation relations and the interaction 

terms have already been presented in 3SR-1071, we will not 

repeat them here.  The new constitutive relations (in 

particular the crushup model) are discussed in Section 5.2. 

The various modifications of the POROUS code are described 
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in Section 5.3.  Finally, in Section 5.4 we present material 

parameter calculations utilizing the POROUS code.  Compari- 

son with SKIPPER results is also given. 

5.2 CONSTITUTIVE LAWS 

The TINC definitions and constitutive laws have been 

previously presented in 3SR-1071.  However, for sake of 

completeness, we will briefly review this work here.  We 

shall denote by <s , 4  and I       the rock grain, the pore 

fluid and the void space, respectively.  The mass of consti- 

tuent 4  per unit volume of the composite is called its 
fa) 

partial density  p  and the total mass per unit volume of 

composite  p  is given by 

2 f   > E(a) 
P 

a=l 
(5.1) 

(In the preceding equation, summation is over a=l and 2 only 

since the voids have no mass). The total stress o associ- 

ated with a unit area of the composite is decomposed into 
(a) (a) 

partial stresses  a  associated with each component  4 

^ (a) 

o-l 

Partial stresses 
(a) 
a 

ated to effective stresses 
:«) 

and partial densities 
(a) 
p  are re- 

and effective densities 

(5.2) 

through the relations 

(cO 
o 

(a) 
P 

CoO   (a), 

(a)    (a), 
(5.3) 
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CSD (a) 
wnere  vn' denotes the volume fraction of  &' .  In writing 

down the preceding relations, it is assumed that the geologic 

composite is Isotropie (See 3SR-1071). 

Partial volumetric strains are now defined as 

Co)   (a) 
e  =  J - 1 (5.4) 

where 

(a) 
J 

(a) (a) 
P /p (5.5) 

and the subscript  o  denotes the initial value of the sub- 

scripted variable.  Partial volumetric strains   e  are 

related to the effective volumetric strains by the relation 

e   =  J   - 1 

(a), 

THT - 1 = 

Partial volumetric strain for 

Co) 
n 

n 
o 

(1) 

d E ) (5.5) 

is often denoted 

in literature as the bulk volumetric strain. We note here 

that the partial strain tensor for -i , e.., is identi- 

cal with the bulk strain tensor measured in the laboratory 

tests. 

With the above definitions, we are ready to introduce 

the TINC constitutive laws (see also 3SR-1071). 
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(1) 

»  wi   i    i      paw '■  «>•' ' '     "" 

CD 
ij 

(1) (l) 
p (S . . + s.. 

ij -u 

CD        CD     /(l)e    CD. 
p        =     n  P    ( c   e,     E ) 

CD 
n     P 

i 

CD 
n 

nr 
n 

L    o 

X   - 
CD 

I,     E 

CD 
sii 

2u  e. .    felastic flow) 
P  iJ 

CD  CD    2 
S. • S.. = -i-Y 2  fplastic flow) (5.6) 

where 

CD 
A =  J 

CD 
e • 

CD 
s.. 

Here  P  ( e e,  E ) denotes the equation of state of the 

isolated rock component, ^  is the specific internal 

energy,  M   is the shear modulus of the porous rock and Y^ 

is the yield stress of the porous rock in simple tension or 

compression. 
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(2) 
6 

(2) 
a. . = 

(2) ^ 
P  6i 

iJ 

(2)   (2)   /(2)e  (2)^ 
p  =  „  P ( e e,  E I 

(2) 
n P 

(2)       (2)1 
JL-Y " li  E TIT 
n 

L o 

(5.7) 

where 
(2) 

Y - J 

Here 

and 

1071 

P fi)e,     E ) denotes the equation of state for water 

^   is the specific internal energy. 

Specific form for  Pi  and ?2     were given in 3SR- 

For present purposes! it is not necessary to utilize 

these specialized equations of state.  The constitutive 

relations as given above are complete only when the volume 

fractions tä       tjP  and W   are specified.  In the pre 

vious work on TINC, we utilized a form of pressure ^equilibrium 

to determine  Ci) and  ln} (and hence  n  since  n  +  n  + 

W   =   1).  During the past year, an alternate formulation 

has been developed.  This formulation does not require pres- 

sure equilibrium and is believed to be more realistic 

especially at low pressures.  At high stress levels, the re- 

sults of tne present analysis differ but little from those given 

by pressure equilibrium.  In the following, wegwill outline 

the analysis first for a saturated material ( n =   0) and 

then extend it to the unsaturated case. 
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5.2.1  Saturated Media 

To simplify the following discussion we will consider 

the Isotropie response ( S.. =0) only.  A little reflection 

will reveal that the analysis is valid, under the stated 

assumptions, for non-isotropic loading as well.  We will 

regard  n  and  n  C= 1 -  n ) as functions of  A  and  y 

only.  Alternately n and  n may be postulated to be 

functions of P P  and  P , where 
P       P* 

(1)     (2) 
P  =  n P  +  n P 
C 1 2 (5.8) 

P  = P 
P      2 

Constitutive relations (5.6) and (5.7) may be r^ 

written as: 

CD 

d p 

(i) (1) (i) 

a F a  e 

(2) ™      (1) W 

9   E 9  e 

(2) 
dp    ■ -^fy d e    + -#5- d c 

(1)        ^:J      (2) 
^de     .^d 

(5.9) 

where 

(1) 
e    =  A  -  1 

(2) 
£      =   Y   -   1 
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(1) CD m {^ (1)) 
-^^ n  piiTrT   Try TTT^ 

(no "o   3   e   ) 

j P 9 n    p 

3   e 9   e 

(1) 
3   n 
"TTT 
9   e 

CD 
p
1 

+ rTTAP 

n 
IT) 

n 

CD CD 
5  p     _   9  n 
"Ttr " TTT 
9   e 9   e 

(1) 
P     +     n     P 

i 

(1) 
A     9   n 

TTT-or 
n     9   e 

o 

(1) 
9  n 
"TTT 
9   e 

(1) 

n 

xp- 

(2) 

"OT 
9  e 

(1) 
9  n 
"TTT 
9  e 

(1) 
n rrrp; 
n 

(2) 

Mr 
9   £ 

(1) 
9   n 
"TIT 
9  e 

P    + 
2 

(1) 

TTT YP. 
1   -     n 

% (: ■ V)- 
1    - 

TTT 
n 

(5.10) 

'!■» .' 
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V 
i 

dP 

n 
TIT 

We will now assume that the energy changes associated 

■ith dissipative forces are small as compared with those due 

to mechanical deformation.  Thus, in a first order theory, 

the system may be regarded as conservative.  This implies 

that the final state be independent of the loading path. 

Let us now consider strain energy changes associated 

with the following loading sequence: 
CD 

(1) We increase   p  by an incremental amount 

d p while keeping  ^■p-' constant.  This re- 
(1)      (2) 

suits in partial strains  d e  and  d e 
(1)      (2) '        1 

in  4  and   <s , respectively. 
(2)     (?.)    (2) 

(2) Next we increase  p  to  p  + d p  while 
(1)     (1)  CD 

keeping pressure in 6     at       p +d p .  Strain 

changes associated with this load step are 
CD C21 

d   E     and     d   e   . 
2 2 

Therefore,   the  change   in  strain  energy   is: 

/CD       ,      CD\      CD C2)   C2) 
dU  =   ( p     + T J  P  ) de        +     p   d   E 

i i 
C5.ll) 

C2)\     C2)       /CD        CD\     CD /C2)      .     C2)\     C2)       /CD        CD\ 
+   \ p     +ydpjde     +'p     ♦ d p I   d 

If we now reverse the order of loads, we obtain 
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dU 
/(2)   ,   (2)\  C2)   (1) CD 

= (p  ♦ f d p ) d c2 + p d e2 

/(I)   ,  Cl)\  (1)   /(2)    (2)\  (2) 
+ (p .  \d  V)    d   ei   ^    [p     +  d  V  }   d   ei 

(5.12) 

Equating "he two express ions for strain energy, we have 

(1) CD   (2) W 
d p d r - d p d e (5.13) 

(2) 
Substituting    d p     =   0     in Eqs,   (5.9),  we  obtain  after 

some  algebraic manipulation: 

(2) 
3 a) 

(2) 
d   E 

( 
3   e 

TTTTÜ 

fydp 

3   P      3 
MTMT-MT1* 

3   e 3  e 

(5.14) 

Similarly, we have 

(1) (2) 
^ydp 

(2)        3e d S =    CD    U)       UJ    CTT 
^r Mr - Mr Mr 
3e3e 3e3e 

Combining  Eqs.   (5.13)   through   (5.15),   there   follows 

(1) (2) 

3   e 3   e 

(5.15) 

(5.16) 

153 

— ^tfgb^^^^^^^^^^^^^^gUb^^^Ui^^^ 



. ^mmmm*" mmmmmm 

An analogous relation for linear elastic materials was pre- 

viously obtained by Biot[43] on the basis of essentially 

similar arguments. 

Next, substituting from Eqs. (5.10) into Eq. (5.16), 

we obtain 

(1) 
3  n 

dX 

(1) 
9   n 

dy 

CD 

. + irr xp; 
n 

P    + 
2 

—rn 
1   -     n 

tiTifP: 
1   -     n 

An  incremental  change  in      n     is  then given by 

(5.17) 

CD (1) 

d n 3 n 
9X 

dX   + 

CD 
3  n 

dy dy (5.18a) 

(1) 
9 n 

5T 

P       * 
2 

1     - 
CD 
n 

nTvP: 
1 - n 

dX   - 
(1) 

n 

dy 

XP' 
i 

(5.18b) 

CD 
istitutes  a prescription  for     d n in Equation   (5.18b)   constitul 

terms   of    dX,  dy  and  9 V/^.     To  prescribe  a  functional  re- 

lationshin  for  the  unknown  function    3 n /3X,   it   is  convenient iship for 

to  regard      n    a»  a  i-un^cj-^" ^^     'c  *p           P 
X     and    Y«     Simple  algebraic manipulations yield: 

as  a  function of     pc-
pp and    P       instead of 
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CD 
9   n 

8X 

fCDT CD 

tTTP. 3CPC^P) / 

n 
(5.19) 

(1) 
9   n 

3Y 

(1) /         (1)\ CD I 
n    \1   -     n  / 3  n      ?. + U  m ^7^ 2 

1   -  n 1 

(1) 
n   / i 

TTT   2    • 
^   3  n /  X 

n 

where 

X  =  1   - TIP 
CD 

3  n 

c    p- 

(1) 
P
1 

+
 TTT

AP
: 

n 

CD 
p   + 

2 ITT YP
2 

1-  n 

+ —irr p
2 äT 

(1) 
3  n 

1-  n 

Combining  Eqs.   (5.17)   and   (5.19)   there   follows 

(1) 
3 n 

(i) 
3  n 

(P   -P   ) v  c     p 

(1) 

"  my' P     + 
2 

(1) 
1-  n 
"TTT 
1-   n 

yP 

(5.20) 

1-     n n 

(1) 

u- s / P' P + ^ XP' n/^4 in P2 
d-   n 

(1) 
n 

TIT 
n 

p     +  .^ AP 
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(1) 
Equations (5.19) and (5.20) now express 3 n /9X  in terms 

of 9(nVa(Pc-Pp) 
CD. 

At this stage, we will postulate that 3 n/9Cpc'
Pp) 

does not explicitly depend upon P , i.e., 

(1) 

3(P "P ) ' f(Pc'Pp) v c p 

(5.21) 

Function  f(P -P ) may be determined from hydrostatic tests 

with P  kept at zero.  This completes our discussion for 
p 

the saturated material. 

5.2.2 Unsaturated Case 

In 3SR-648^ and 3SR-1071,^ two crushup hypotheses 

were discussed, viz: 

1. Disconnected Pores 

2. Connected Pores 

The two hypotheses are tantamount to assuming the void space 

as being completely embedded in either solid (1st) or fluid 

(2nd).  The first of these was utilized to construct various 

crushup schemes reported in 3SR-648 and 3SR-1071.  We will 

find it convenient to utilize the second of these.  This 

Hows a straightforward extension of the results of the 
now 

a 
saturated case to the present one.  In other words, we con-^ 

sider an extended fluid (Vol. Fraction - 1 - n  =  n  +  n 

filling the pore space.  The fluid pressure, Eq. (5.7) is 

now modified to read as: 

) 

(2) 
P ■   : ■ ^ 

(1) 
n 

m 
n 

(1) 
1 - n 
—rrr 
1 -  n 

(2) 
Y-l.E (S.22) 
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CD 
n (1) 

Note that on loading P2  0  for —jyp^- JJJ    Y > !• 
n   1 -  n 

Upon unloading, it is possible to admit expanded states by 

relaxing this condition.  Also, 

P' 
2 

dP 
2  —tir 

1 - n 

(1) 
n 

Again on loading  P' - 0  for TU" 
n 

1 - n 
—nr 
1 - n 

Y > 1. 

With these new definitions for P2 and P^ , the entire 

analysis of the preceeding section applies to the present 

case as well. 

A few remarks are here in order.  On loading for 

(1) 
1 -  n 

T2T 

CD 

n     1 - n 
o o 

1.  The fluid does not undergo any pressurization and plays 

no role in overall deformation.  It is easy to verify 

that 

(1) 
3 n 
"TP" 

(1) 
9 n 
9Y 

E 0 
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2.  The material undergoes reversible (for p < p ) and 

irreversible (p ^ p ) void collapse. 

Upon unloading  from some pressure  P*  and subsequent re' 

loading, we require that for  P  > 0  and P =0, 
1 2 

For  p < p 

(1) 
3 n 

v c  p 

(1) 
3 n 

= 0  for  P* > p > p 
i - K - Ke 

ship. 
- Pe' TTB   -P )   retains its usual functional relation- 

CD 
5.2.3 Data Fit for 9 n /3fP -P ) 
  _ c p^ 

(1) 
It was remarked in Section 5.2.1 that the function 

3 n /3(PcPp) may be determined from hydrostatic tests with 

Pp  kept to zero.  If the matrix material is significantly 

weakened by physico-chemical interaction with water (e.g., 

tuff), it is important to utilize the data on the wet material 

In the present study, we will fit the present model to the 

data for NTS tuff used in constructing the homogenized model 

employed in the May 8 Mine Dust HE calculation (Section 2.2). 

The assumptions underlying the present fit, in particular no 

fluid pressurization as long as  n  is non-zero, of course 

differ from those employed in Section 2.2.  The equations 

of state for the compacted tuff and water components are the 

same as reported in 3SR-1071.  Other parameters are listed 

in Tables 5.1 and 5.2. 
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TABLE   5.1 

(1) 
PARAMETERS   FOR   d   n  /3 (*<.-*-)   FIT 

pc 
(kbar) (kbSr) 

0 

(1) 
11 

(2) 
n 

(3) 
n 

(1 0.6365 0.3135 0.05 

0.15 0 n (not given) 

1.25 ii 0.668587959^ 0 

15l  J 0 1 

(*) Calculated by assuming fluid pressure  P  to be zero 

CD   CD  /   a).(i)\ 
and taking  P -  n  P -  n K  ll - A n / n I. 

(2)      (1)\ I 
Here  K.- 294 kbar, A = Y= n /(l -  nj p

p 
= p

2 
= ü ^ 

(1) 
Y|l - n 

(2) 
/ n = 1 etc Tuff matrix is assumed to 

behave in a linearly elastic manner over the pressure 

range 0 - 1.25 kbar. 

(**)  Extrapolated.  Dry tuff is assumed to be voidless at 15 

kbars.  This value is consistent with previous esti- 

mates of this parameter. 
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TABLE 5.2 

(1) 
ADDITIONAL PARAMETERS IN THE  3n /3(PC-Pp) 

FIT 

d). 
Zero pressure compacted tuff density fp )"  2-4 g/cc 

Zero pressure composite bulk modulus1 J (.K) = 27.5 kbar 

p  =0.15 kbar 
^e 

CD (1) 
n 

(*) If P = 0, then Pc =  n  Ks II - -^ 

n 

K 
V» 

dP CD c 
dX P    ■ 

c 
«   0 

n     Ks/ 1 + K 9 n 
s W. P  = 0 
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The following piecewise continuous function was fitted 

to the above data: 

(1)   CD 
n = n + aP +  a P1- 

0     1  C      2  C 
o < P < P0 — c — e 

" ne + a1 CPc-Pe) 
+ a2 (Pc-Pe)

2 -  a3 (Pc-pe) 

p  < P  < 15 kbars (5.23) 

The six unknown constants are found by applying the following 

conditions: 

(1)  Matching zero pressure bulk modulus.  This yields: 

(1) 
n     -   K/K 

a     = —L_ 1 =   0.019744094  kbar   1   . 
1 * 

(1) 
9  n (1) 

(2)     Requiring  continuity  in    n    and       ^       at 

P     =  P   .     This  yields 
c e ' 

n 
(1) 
no   +   S   Pe  +   a2   V (5.24) 

and 

a     +  2a p     =   a 
i 2re i 

(1) 

(5.25) 

(3)     n    =  0.668587959  at  P     =   1.25  kbars.     This  gives: 

0.668587959   =   ne   +  a (1.25   -   pe) (5.26) 

♦  i (1.25   -   pj2   ♦  i   (1.25 -   p   )3 

2                                   63 c 
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CD 
(4)       n 1  and 

CD 
3   n 
"TP7 

=  0  at  P, IS kbars.  These 

requirements are equivalent to 

1 - n ♦ i  (15-pJ -  ä  (15-pe)
2 -  ä3 C15-Pe) 

(5.27) 

0 - i    +   2a     (15-pA)   ♦  3a     [IS-pJ (5.28) 

Solution   of  the  algebraic   set  of equations   (5.24   - 

5.28)   finally  gives   the  required  constants. 

a     -   0.015945583   [kbar]'2 

2 

n     =   0.6^9820389 
e 

i = 0.024527/70 [kbar]'1 
i 

i  = 0.001596499 [kbar]'2  . 
2 

i  =-0.000108747 [kbar]'3 
3 

(1)      (1) d) 
Given the function  n ,  3 n /3PC  (and hence 3 n /9(PC-Pp)) 

may be obtained by simply differentiating Eq. (5.23) w.r.t. 

P .  Thus we have 
c 

(1) 
9 n = a  + 2a (Pr 

1        2   C 

= ä + 2a  ((Pr 
1        2      C 

P ) 
P 

0 < P — c P  < PQ p — "^ e 

P ) 
P 

PJ + 3a^ ((Pf Pp) - Pe) 

p  < P Fe - c 
P  < 15 kbars   (5.29) 
P - 

Since data are usually unavailable for negative Pc - Pp (or 

negative  Pc  at zero pore pressure) and since such states 

be attained during stress wave propagation, it is neces may 
il) sary to estimate ZKtxJ/di?c   -   Pp) for Pc " Pp < 0 . 

In the present case, we will assume that the functions given 

by Eq. (5.29) are symmetric functions of  Pc P , i.e. 
P' 

16; 
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CD 
d   n 

», + 2a2l
Pc-Pp 

0 < P -P 
c p < P 

= i + 2i (|P -Pj - PP) 
+ 3a (lp( " Pe^ 

n  < IP -P I < 15 kbars.  (5.30) pe - ' c p1 - 

In Fig. 5.1, we sMw the loading-unloading response predicted 

by the present model for low composite pressures.  A com- 

parison with the results of the homogenized model of Section 

2.2 is also shown.  In general, the present model predicts 

stiffer material response at low pressures.  This is a 

consequence of the assumption that water does not pressurize 

as long as ^   t  0.     At higher pressures (not shown here), 

the response predicted by this model differs but little from 

the one predicted by the pressure equilibrium model. 
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5.3 THE POROUS CODI: 

The POROUS code is a one-dimensional (either planar 

or spherical symmetry) time-dependent numerical scheme de- 

signed to solve the TING equations for binary composites 

of a solid porous matrix (such as tuff) and water.  Both 

saturated and unsaturated cases may be treated.  The basic 

methodology used in POROUS has been described at length in 

3SR-1071; in the present report, recent improvements in the 

scheme will be discussed. 

Numerically, POROUS employs a fundamentally Lagrangian 

explicit forward-time finite-difference procedure to solve 

the mass, momentum and energy conservation laws for the tuff 

- thus, the coordinate system may be visualized as anchored 

to individual tuff particles.  On the other hand, the water 

is treated in a pseudo-Eulerian fashion, in that water may 

flow from one grid cell to the next,  Therefore, the mass, 

momentum and energy conservation laws for the water contain 

advection terms, with the advective velocity at each pcint 

equal, numerically, to the difference between the local water 

and tuff particle velocities.  In a given computational 

cell, the tuff mass remains constant but the '^.ter mass may 

vary with time. 

The present POROUS code differs from the earlier 

version described in 3SR-1071 in four essential respects. 

First, the boundary conditions have been generalized.  The 

earlier version allowed only a "prescribed velocity history" 

boundary condition to drive the calculation.  In the present 

code, either the velocity history or the total stress his- 

tory may be prescribed.  As an additional option, in 

spherical geometry a "high-explosive burn" capability has 

been added to allow simulation of underground explosions. 

Second, the interaction terms in the momentum and energy 

equations for both media are now integrated implicitly. 
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which removes a constraint on the time step size.  Third, 

the assumption of pressure equilibrium between the two media 

has been eliminated; instead, the formulation described in 

Section 5.2 is employed.  Finally, the finite-difference 

equations have been recast in a form which allows arbitrarily 

weak signals to be treated without loss of accuracy due 

to computer round-off error. 

5.3.1  Boundary Conditions 

In 3SR-1071, the basic procedure for imposing a 

prescribed velocity history at the left edge of the grid is 

described.  The water ; nd tuff velocities are constrained 

to be the same at the boundary, and equal to the prescribed 

overall boundary velocity.  To impose a stress boundary 

condition at the boundary, a similar condition is imposed: 

the seperate stresses for each component to be used in the 

"fictitious" cell to the left of the grid are determined by 

demanding that (1) the total stress evaluated at the boundary 

(the average of the stresses in the fictitious cell and in 

the first actual cell) match the prescribed total stress, 

and that (2) the accelerations of the two components at 

the boundary be equal. 

In either case, the boundary prescription requires 

that the velocities of the two components be equal at the 

boundary.  In reality, of course, there is no particular 

reason for oelieving that this is always true.  If, for 

example, a sample of wet tuff is shocked by a piston-like 

impact, it may readily be visualized that the water velocities 

will momentarily exceed the tuff velocities.  Subsequently, 

of course, the viscous interaction terms will equilibrate 

the seperate component velocities, but a relative displace- 

ment will have taken place.  Now, the POROUS code allows 

this relative displacement to occur in the interior of the 

grid, but is in some sense inconsistent in that such 
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displacement is automatically precluded at the boundary. 

This need be of little concern for numerical calculations, 

however, unless the "permanent offset" is comparable to 

the size of a computational cell.  For practical problems 

involving water and tuff, the offset is exceedingly small. 

For other binary composites which are weakly coupled, it 

may be necessary to reformulate the boundary conditions to 

allow differential motion at the grid perimeter. 

As a special-purpose option, the POROUS code {in 

spherical geometry) can also treat the innermost zones as 

containing chemical explosive, using the HE burn formula- 

tion of Section 2.2.5.  This option can be useful in the study 

of underground explosions.  At the interface between 

the explosive and the wet tuff, all velocities (high 

explosive, water and tuff) are assumed to be equal. 

5.3.2  Interaction Terms 

The earlier version of the POROUS code described in 

3SR-1071 treated time-advancement of all field variables 

in an exclusively explicit manner.  This treatment places 

stability constraints of various sorts on the maximum size 

of the computational time step.  One of them is the classi- 

cal Courant condition: 

. . Ax 
T « r- C5.31) 

where  T  is the time step. Ax  is the length of a zone, and 

C is the shock speed.  Due to the viscous interaction between 

the two media, an additional constraint must be imposed: 

(2) 
T «  k/(y[ n ]2) (5.32) 

where  k is the tuff permeability,  y  is the kinematic 

viscosity of water, and  n  is the water volume fraction. 
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The kinematic viscosity of water is about 10'  cm /sec, a 

"typical" O'ithin an order of magnitude or so) permeability 

for tuff is lO*11 cm2, and a "typical" water volume fraction 

is 0.1.  In this case, the above requirement (2) is therefore: 

T << 0.1 ysec 

Now, a typical shock speed in tuff is 0.2 cm/ysec.  There- 

fore, the two constraints wilx be about equally restrictive 

if the space interval is 

Ax = 0.02 cm = 200 y. 

Since computer storage limitations generally restrict the 

grid to 500 zones or so, this means that the entire domain 

under consideration must be no more than about 10 cm in 

extent.  For practical problems, raiges of interest are 

generally much greater than this, and hence a purely 

explicit treatment would require an enormous number of 

time steps. 

To circumvent this difficult/, the interaction 

terms in both media in both the momentum and energy equations 

were treated implicitly In the latest version of POROUS. 

This essentially eliminates requirement (2) above.  There- 

fore, the only constraint on time step size is the Courant 

condition, as in more conventional (homogeneous) procedures. 

5.3.3  Constitutive Relations 

The POROUS code described in 3SR-1071 employed a 

stress-equilibration constraint to establish the relative 

volume fractions of tuff and water at each point in the 

composite at each time step.  That is, in a particular 

computational cell, the mass of each component was computed 

directly using the mass conservation principles (the tuff 

mass, in fact, remains constant).  The volume of the zone 
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as a whole is computed using the momentum equations and the 

kinematic condition.  The specific heat content of each - 

component separated was computed using the energy conser- 

vation principle.  Now, the pressure of each component 

is a unique function of its density (mass/volume) and its 

specific heat content.  Consequently, the partition of the 

total available volume could be determined if it was assumed 

that the effective stress was the same for each component. 

In practice, this was accomplished (for each zone at each 

time step) by a Newton-Raphson iteration procedure in- 

volving the equations of state of the two materials. 

The pressure-equilibrium assumption is appropriate 

for high shock strengths (50-100 kbars or more), but at 

lower shock overpressures pore-pressure effect becomes im- 

portant.  Accordingly, in order to make the POROUS code 

useful for weak-shock calculations, the explicit formula- 

tion for determining component volume fractions described 

in Section 5.2 was employed.  Numerical experiments have 

shown that at high shock strengths the results are essentially 

indistinguishable from the pressure-equilibrium case, but 

that for weaker shocks the medium behaves in a "stiffer" 

manner than was predicted by the previous method. 

Implementation of the non-equilibrium explicit model 

involves the direct integration of field equations for the 

volume fraction distribution.  Since the empirical relations 

between volume fraction, pore pressure, relative compression, 

etc. are ill-behaved (at best piecewise continuous), a time- 

step appropriate for the calculation as a whole will generally 

be far too large to provide accurate results for strong 

shocks, particularly at the shock front where the relative 

compression increases rapidly with time.  Accordingly, 

the model described in Section 5,2 is solved by a "subcycling" 
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procedure in which the independent variable is the overall 

volumetric strain.  Empirically, it has been found that 

restricting the strain change to 0.02 percent per subcycle 

is adequate to produce accurate results. 

5.3.4  Low-\mplitude Finite-Difference Equations 

The final fundamental refinement to the POROUS code 

is strictly numerical in character.  The alterations made 

to the finite-difference equations in no way change their 

content, but are designed exclusively to minimize the 

effects of "round-off" error; that is, the finite number of 

significant figures retained by the computer.  For strong- 

shock problems, the difficulty does not arise, but for weak 

signals, conventional procedures often produce numerical 

"hash." The problem may be simply stated as follows.  The 

caloric equation of state for a material may be expressed 

in the form: 

P = fOM) (5.33) 

Where E  is the heat energy per unit mass and IJJ  (the 

relative compression) is given by: 

4; =^- - 1 
P 

o 

(5.34) 

where  P  is density and P0  is "ambient" density.  In the 

present context, the pressure in cell i at time = t  may be 

expressed as: 
(a)k 
P 

(a)k  (a)k, 

i  ■ f I »i •   Ei ) (5.35) 

where  a = 1  or  2  (tuff or water), and 
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(cOk 
(a)k   (a) 
M.       V. 

i i 
irr TTy¥ 
<   vi 

- i C5.36) 

For a weak shock, the equation of state for most materials 

may be approximated by a first-order Gruneisen equation of 

state: 

(a)   (a) (a)  (a) {a)    (a) 
P  =  A  ijj+G   p   E (5.37) 

(a) 
where  A  is the bulk modulus of material  a and G  is 

its Grüneisen coefficient.  Since, at low compressions, the 

quantity (p/p ) is exceedingly close to unity, direct em- 

ployment of Eq. (5.36) can lead to "quantization" errors 

in pressure.  For example, consider a Cartesion sample 

material case with 1000 zones.  Now, if the computer has 

essentially seven significant figures (which is common), 

the cell volume for cell number 1000 cannot be known to a 

greater precision than four significant figures.  Accordingly, 

the smallest increment in ^    which the computer can con- 

sider is about 10-3.  Since the bulk modulus for tuff is 

about 300 kbars, this means that the smallest pressure 

increment available is 30 atmospheres.  Clearly, for strong 

shock problems this is not particularly important but for 

weak shocks unacceptable signal to noise ratios may result 

and generate spurious high-frequency waves which will reduce 

the calculation to nonsense. 

To circumvent this difficulty, the finite-difference 

equations may be re-cast in the following general way (for 

simplicity, Cartesian geometry will be assumed and a pure 

compacted-tuff problem will be considered):  Let: 

Vk = V0. ♦ 6Vk 
i    i     i 
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where V0  is the initial cell volume at t = 0 and 6V. is 
1 lr     .* 

the difference between the current volume at  t 

initial volume.  Now, 

Vi = Xi+l/2 " Xi-l/2 

and the 

i+1/2 ' Xi-l/2 + 6Xi+l/2 6Xi-l/2 

so that, for tuff (M. = M}), 

k       k 
6Xi+l/2 ' 6Xi-l/2 

Xi^/2 ' Xi-l/2 + 6Xi + l/2 ' 6Xi-l/2 

where *\+i/2     is tlie initial location of the right-hand edge 

of cell  i  ai-.J   X. .,->   is the difference between the current 

position and the initial position.  Since  (5Xifi/2  can be UP" 
dated directly, i.e. by: 

6X k+1       AVk       ♦ uk+1/2 At 
1*1/2 " 6Xi+l/2 

+ vi+l/2 
At 

the valu o(    ip may take on arbitrarily small values, ir- 

respecti^ e of the number of significant digits available. 

This me« , in practice that whereas in the previous scheme 

only one "positi ^n" array (^j+i/?^ needed be stored in the 

computer memory, two (x?+1/2'   1 + 1/2-' are *low recluired- 

For multi-component systems (i.e. tuff and water) and 

for problems in spherical geometry the algebra is somewhat 

more r^'Wiplex, but the same general approach is used.  For 

example, since the water mass in a cell may vary with time, 

four arrays are used to describe cell water content: 
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(2)k 
M   . 

(2) 
M   0 

(2)k 
♦ 6 M  . 

i i 
(mass) 

(2)k 
n   ■ 

(2) (2)k 
n   ?   +   6  n   . (volume   fraction) 

so  that 

(2)k 
C) (2) 
n   [   (V?   6Mi 

(2)     k 

i   i 

(2)k(2) 
6n.     M     (V ,   +   6Vi) 

(2)    (2) 
M?(  n?   ♦ 

TOk k 6n p(V}   -   öVp 
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5.4   NUMERICAL CALCULATIONS 

The spherical version of the POROUS code was exercised 

for a sphere of partially saturated tuff ( n = 0.6365, n = 
TS i       \ 0 

0.3135,  n = 0.0500) which is initially 35 cm in radius 

and has a central 5 cm radius spherical cavity.  The entire 

35 cm radius sphere is divided into 200 computational zones. 

The central cavity is zone one.  The remaining 199 zones are 

selected such that the mass of each zone increases by a 

factor of 1.02, i.e., Mk+1/Mk = 1.02.  The material response 

was monitored as a function of time at stations which were 

initially at 7.5, 12.5, and 25 cms.  The loading was by an 

exponentially decaying stress pulse of the form 

a fr ,t) = 35e"t/10 kbar  ft in ysec) 
rv c' ' 

applied at the interior of the cavity.  Other material 

parameters utilized in the calculation are listed below. 

y/k ^viscosity of water/permeability) = 1010 g/cm3-sec 

\i     (shear modulus) = 15.0 kbar 
P p      p 
Y (yield stress) = Y p^ (2 - p^-) 

for P < P = 0.6 kbar 
c -  o 

Y  for  P  > P 
0        c —  o 

Y  =  0.623 kbar 
o 

For purposes of comparison, the calculation was re- 

peated with the SKIPPER code which utilizes the homogenized 

model described in Section II.  Results of these calculations 

are shown in Figs. 5.2 through 5.12.  Composite radial stress 
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Fig. 5,2--Composite radial stress history at 7.5 cm, 
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Fig. 5.3--Composite radial stress history at 12.5 cm, 
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io. 5.4--Composite radial stress history at 25 cm, Fig 
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Fig. 5.5--Composite particle velocity history at 7.5 cm, 
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Fig,   5.7--Composite  particle velocity history  at 
2 5  cm. 
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Fig. 5.8--Tuff component radial stress history at 7.5 cm, 
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Fig.   5.9--Tu£f component  radial  stress history  at   12.5  cm. 
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Fig. 5.10--Tu£f component radial stress history at 25 cm. 
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Fig. 5.11--Pore pressure history at 7.5 cm. 
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Fig.   5.12--Pore  pressure  history  at   12.5   cm. 

185 

--' • -------   - 



mm ^mmmmmmmmmmmm "-^^ 1 H   «!  '"■ 

histories and particle velocity histories (as given by the 

POROUS and SKIPPER calculations) are plotted in Figs. 5.2 

5.4 and 5.5 - 5.7 respectively.  Time histories of the radial 

stress in the tuff component and the pressure In the pore 

water calculated with the POROUS code are depicted in Figs. 

5.8 - 5.1Ü and 5.11 - 5.12 respectively.  Note that no pore 

pressure history for the 25 cm station is shown since the 

pore pressure at this location remains zero throughout the 

calculation. 

It is of interest to compare the SKIPPER and POROUS 

results (Figs. 5.2 - 5.7).  The two calculations appear to 

agree well at high pressure levels (Figs. 5.2, 5.3. 5.5 

and 5.6).  However, the results differ significantly at low 

pressures.  In general, the POROUS code predicts higher 

amplitudes and earlier times of arrival than those given by 

the SKIPPER calculation.  These results are not really 

surprising since the TINC model differs but little from the 

pressure equilibrium model at high pressures; at lower 

pressures, however, the TINC model predicts considerably 

stiffer material response than the homogenized model. 

POROUS calculations (and. to a lesser extent, SKIPPER 

results as well) exhibit a two-wave structure (Figs. 5.2 - 

5.3, 5.5 - 5.6. 5.8 - 5.9. 5.11).  To understand this 

phenomenon, it is useful to consider the wave diagram. Fig. 

5.13.  At t = 0. a shock wave (main shock) emanates from the 

boundary and propagates into the undisturbed medium ahead of 

it.  Since the input pulse at the boundary is decaying 

exponentially, the main shock is immediately followed by a 

rarefaction wave.  This rarefaction wave is coincident with 

the main shock.  Thus, any small volume of the material is 

first shocked to some peak stress and then starts unloading. 

When the total pressure  Pc decays to approximately 1.32 

kbars, the pore pressure (P^ goes to zero.  Once ?2   is 

zero, the material is allowed to unload only along lines of 
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Main Shock 

Boundary 

Fig. 5.13--Wave diagram corresponding to POROUS Run 3. 
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(1) 
constant  n  (dashed lines in Fig. 5.1).  This results in 

a second rarefaction wave (indicated by  P =0  in Fig. 5.13) 
2 

It travels at a faster rate than either the main shock or the 

first rarefaction wave, and eventually develops into a rare- 

faction shock (see Figs. 5.2 - 5.3, 5.8 - 5.9).  The rare- 

faction shock catches up with the main shock at  t = t 
2 

and then reflected as a compressive wave.  This compressive 

wave steepens as it propagates towards the boundary result- 

ing in the two-wave structure.  At a later time (t = t ) 

the compressive wave is reflected at the boundary as a 

rarefaction wave. 

The discussion of the proceeding paragraph attributed 

the two-wave structure observed in the POROUS calculation to 

the assumed unloading behavior (const  n  for P  = 0),  To 

further study this aspect, the calculation was repeated by 
(1)     i*   « (1) 

permitting  n  changes during unloading such that 3 n /^PJ 

load E 9 n /9P.|unload.  The results of this calculation 

tZ\)   are compared with the proceeding calculation (Case 3) 

are shown in Figs. 5.14 through 5.19.  The two wave structu 1 

disappears in calculation 3A lending credence to the remark 

that such a structure is a result of discontinuous unloading. 

For late times (Fig. 5.16), Case 3A yields higher peak 

amplitudes than Case 3.  This is to be expected as the un- 

loading is much more rapid for Case 3. 

There is some evidence that the yield stress of rocks 

is determined by the "effective stress law." This law states 

that the yield stress of a porous solid depends uniquely 

on the effective stress, which is defined as the difference 

between the total normal stress active on any plane and the 

pore pressure.  In the present case, the yield stress can 

then be written as: 
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Fig. 5.14--Comparison of composite radial stress histories 
at 7.5 cm (POROUS Cases 3 and 3A). 
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Fig. 5.15--Comparison of composite radial stress histories 
at 12.5 cm (POROUS Cases 3 and 3A). 
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Fig. 5.16--Comparison of composite radial stress histories 
at 25 cm (POROUS Cases 3 and 3A). 
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Fig.   5.17--Comparison  of composite  particle  velocity histories 
at   7.5   cm   (POROUS  Cases   3  and  3A). 
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Fig. 5.13--Comparison of composite particle velocity histories 
at 12.5 cm (POROUS Cases 3 and 3A). 
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Y(yield stress) ■ Y p- (2 - P&/M 

fnr P  - P  - P  < P =0.6 kbar ror  A   C   p - o 

Y  = 0.623 kbar. 
o 

An additional calculation (Case 4) was run using this nev, 

definition of yield stress.  The results of this case, how- 

ever, differ but little from Case 3.  This is largely due 

to the relatively low yield strength for the material. 

This effect can be expected to be more significant for 

stronger materials. 

To further verify the TINC formulation, the SKIPPER 

HE calculation of May 8 (Section II) was repeated with 

the POROUS code.  Material parameters for this calculation 

are listed below: 

y/k (viscosity of water/permeability) = 1010/sec 

u  (shear modulus) =15.0 kbar 
P PA     PA 
Y (yield stress) = Y0 p~ f2 ' V^ 

forPA=P     -P     <P     =0.6  kbar IUI 1A   c   p -  o 

for PA > P( 

Y  = 0.5 kbar 
o 

Results of these calculations are shown in Figs. 5.20 through 

5 28.  Composite radial strcc- histories and particle velo- 

city histories (as given by thß POROUS and SKIPPER codes) are 

depicted in Figs. 5.20 through 5.25.  Tuff and water radial 

stress histories are shown in Figs. 5.26 through 5.28. 
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Fig. 5.20--Comparison of composite radial stress 
histories at 99.7 cm. 
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Fig. 5.21--Cornparison of composite radial stress 
histories at 133.2 cm. 
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Fig. 5.22--Comparison of composite radial stress 
histories at 167.9 cm. 
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Fig. 5.23--Comparison of composite particle velocities 
at   99.7  cm. 
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Fig. 5.24--Comparison of composite particle velocities 
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Fig.   S.25--Comparison of composite particle  velocities 
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The two (POROUS and SKIPPER) calculations agree 

reasonably well at high pressures (Figs. 5.20, 5.23).  At 

low pressures, however, the POROUS code predicts somewhat 

higher amplitudes and earlier times of arrival (Figs. 5.21, 

5.22, 5.24 and 5.25) than those given by the SKIPPER cal- 

culation.  It is to be noted that these conclusions for the 

HE case are consistent with our earlier remarks on the 

exponentially decaying pulse case.  For the HE case, it 

was not possible to carr-. out the POROUS calculation as 

far as the SKIPPER calculation due to the absence of re- 

zoning capability in the present version of the POROUS code. 

If detailed comparisons between the two codes are desived, 

it would be necessary to provide the rezone capability in 

POROUS. 
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xmCsDIIC PATiE BLANK-:JOT FILMED 

VI.     CONTINUUM MODEL  OF   REGULARLY  JOINTED MEDIA 

For  theoretical  calculations  to  match  the   field  data 

it   is  necessary   (see  Section  4.1)   to  significantly reduce 

the  strength   from   that measured  on  intact   laboratory  speci- 

mens.     This   size   effect,   due  to  planes  of  weakness   in  the 

rock mass,   cannot   presently be  predicted  without  dynamic 

field  test  results.      In  this   section,   results   are presented 

from a  study  which  has   the  objective  of  deriving  a rational 

basis   for   scaling   relations  between  laboratory  to  field 

data by  considering   the medium  to  contain   regularly  spaced 

joint',  or   faults.     Sufficient  progress  was  made  in  this 

preliminary   study  to  demonstrate  that   a  continuum model 

with  substructure   to  account   for planes   of  weakness  can be 

developed. 

Sections   6.1,   6.2  and  6.3   review  what   is  known  about 

planes  of weakness   in  rock masses  and   in   laboratory  tests  of 

rock  slippage   along  joints.     The mathematical   framework 

for describing  gross  behavior  of  rock masses   is  presented 

in Section  6.4.     Each block  is  considered   to  deform 

elasticity but   relative  slippage between blocks   is  per- 

mitted.     Incorporation  of  this  description   into  a continuum 

model   is   given   in   Section  6.5.     Finally,   Section  6.6 

describes   the  detailed   formulations   for   the   case  of biaxial 

loading.     The  model   is  analogous   to  an  elastic-plastic 

model  where   the   shear  strength  is  determined by  the  joint 

spacing  and   the   frictional  properties   of  the   fault  planes. 

Block  interlock   increases  resistance   to   slippage  and  this 

effect   is  analogous   to work hardening   in  plasticity  theory. 

As  a  consequence  of  this  analogy   it  appears   that   this  model 

for  regularly   jointed  rock media could  be   incorporated   into 

a continuum mechanics  code  such  as  CRAM  once   sufficient  data 

to  specify  the   substructure  are  available. 
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6.1 ROCK MASSES IN SITU 

Large rock masses in the Earth's crust are commonly 

broken into block structures by fracture surfaces.  These 

are classified into two types.  The most common are JOINTS 

which are fracture surfaces at which little or no relative 

displacement has taken place, and usually occur in sets of 

regularly spaced, more-or-less parallel planes, with a variety 

of orientations.  Major sets can extend from feet to miles. 

Some cross-joints are curved and irregularly spaced.  Another 

feature, not common in granite, is columnar jointing with a 

hexagonal sectiou of side of order one foot, with the column 

normal to the surface, supposedly due to tensile stress set up 

by thermal contraction during cooling. 

FAULTS are fracture surfaces at which significant 

relative displacement has taken place, and again are commonly 

planar and in parallel sets.  Joints occur more frequently 

near faults.  Together these sets of fracture planes, or 

planes of weakness, create a block structure in the rock 

masses, and the fracture planes are possible slide planes 

under appropriate loading.  A more complete description is 

given by Jaeger and Cook. [44 ] 

Spacing between fractures ranges up to several feet 

with "bad rock" fractures inches apart.^   '  Fractures are 

loose and frequent near the surface, but with increasing 

depth tighten under the increasing confining pressure and 

become wider apart.^   ^  Regular fractures occur down to 

thousands of feet. *■       '     In a given locality the simple assump- 
tion of regular spacing between fractures of each set, 

perhaps differing between sets, should be an adequate first 
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approximation in a theory of gross response.  On a large 

scale application, variation of spacing with change of locality 

may be required. 

It is recognized that fractures in the rock mass have 

a significant effect on the gross response, see [44, 46, 48 

49,  50,  51 ] for example, particularly at stress levels below 

5 kbar.  While the blocks may remain effectively elastic (with 

strain infinitesimal) prior to failure, either by fracture of 

intact material or sliding on the pre-fracture planes, the 

subsequent behavior at both these types of fracture plane is 

irreversible and greatly different in nature.  One approach, 

necessarily using numerical techniques, is to model each 

elastic block together with postulated constitutive condi- 

tions at each fracture plane and determine detailed stress 

and displacement fields; see for example [50, 51, 52, 53]. 

In practice, because of the lack of detailed data, very 

idealized structures must be assumed.  This suggests that it 

may be profitable to explore theories of gross response which 

average out individual fracture plane effects, in a sense to 

be determined.  Such a theory would be applicable only on 

length scales (e.g., length of loaded regions or wavelength) 

much greater than the separation distance between fractures. 

Fractures may be open or filled with various minerals 

[44,  45 ], such as calcite, dolomite, quartz, clay.  Calcite 

filling, with approximately the same strength as rock, serves 

as a "cement" and provides a tensile resistance to opening 

of the fracture^49 K     Fault gouge (sliding debris) is usually 

rich in clay, with complex compaction properties and possibly 

significant time dependent response, and is observed to en- 

hance stable sliding.154 ^  Finely powdered gouge generated 

by sliding of various rock specimens has also been observed 

to cause time dependent friction which, in contrast, gives 
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rise to stick-slip. ' Thus, the presence of fault gouge 

after initial sliding can result in complex and widely vary- 

ing response. 

Unfilled fractures result in weakening of adjacent 
r 491 

rock by chemical and mechanical action1   J, but more commonly, 

and below moderate depths, such fractures are saturated with 

water (and occasionally oil) under (pore) pressure [Refs. 

44, 47, 54, 56, 57, 58].   Again chemical action weakens 

adjacent rock, but in addition there is a significant in- 

fluence on the strength relations, attributed to buoyancy and 

commonly described by an effective stress law, see Ref, [ 58 ] 

for example.  V/hile this classical law has some empirical 

foundation, explanatory arguments and analysis [Ref.  58 ] are 

spurious, this will be discussed in more detail subsequently. 

The essential consequence of the pore pressure is a decrease 

in the effective normal stress across the solid contact sur- 

face accompanied by a decrease in the shear resistance to 

fracture or sliding.  Above a critical rate of crack opening 

(dilatancy), approximately 10"7/sec for igneous rocks (crystal- 

line assemblage)      , fluid flow is insufficient to fill new 

voids so that the pore pressi^e drops and effective stress, 

and hence strength, in the rock increases, described as 

dilatancy hardening.  Increase of void space even with satura- 
[591 tion decreases the pore pressure and exhibits the same effect. 

Initial stress in virgin rock mass is commonly assumed 

to be lithostatic, that is, an Isotropie ("hydrostatic") pres- 

sure equal to the overburden stress due to the weight of over- 

lying rock--Hein's Rule [ 44, Chapter 14].  However, while hori- 

zontal stresses are frequently of the same magnitude as the 

vertical stress, in many situations they are observed to be sig- 

nificantly higher.  One explanation'-    *   is that specimens tested 

were originally buried considerably deeper, and the higher 
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horizontal stress is a locked-in residual stress.  Since the 

time scale of the erosion and rock rise in the case described 

is 10  years, and residual stress has been retained, it also 

follows that the rock has a solid behavior over these time 

periods and does not exhibit appreciable atomic diffusion and 

liquid behavior.  Vertical stress higher than the overburden 

stress is also found.  A lithostatic stress in rock of density 

156 Ibs/cu ft increases at a rate of 220 bars (3200 psi)/1000 

yds.  There will also be initial shear stress much more dif- 

ficult to estimate. 

Pore pressure in water saturated porous rock normally 

ranged from (0.4 ► 0.8) * vertical stress1  " J in the undis- 

turbed rock mass, and will be further changed by subsequent 

loading.*  Temperature gradients with depth range from 10 - 

90° C/1000 yards^ ^   with a more usual range 40 - 70° C/1000 

yards, the higher values representing active volcanic regions. 

Thus over the temperature range down to 1 mile, the variation 

of rock properties with temperature will not be significant, 

excluding of course the effects of further appreciable 

thermal loading. 

If the individual anisotropic crystals within a rock 

block are randomly oriented then the block will be grossly Iso- 

tropie, but when there is a preferred crystal direction, as in 

Yule marble for example,f44^ then the nlock is anisotropic.  A 

simlifying isotropy assumption for individual intact blocks 

is unlikely to produce greater errors than other approxima- 

tions and neglect of effects in the very complex description 

of rock behavior.  Composition is relatively homogeneous in 
[44 1 

some limestones, but very heterogeneous in granite.1    How- 

ever, on length scales greater than a foot, and so large 

compared with crystal size of order an inch and less, average 

*Abnormally high fluid pressures sometimes occur in high 
porosity sedimentary deposits in which the confined water 
has been trapped for millions of years. 
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properties are reasonably homogeneous and continuous apart 

from the fracture planes. 

It is recognized that overall strength decreases with 

size of specimen tested, usually attributed to the increasing 

number of flaws, but also related to a possibility that frac- 

ture will be governed by a critical stress being reached over 

a given volume of material which in turn can involve stress 

gradients [44, Chapter 7].  A simple statistical theory 

due to Weibull which replaces critical fracture stress by a 

probability distribution is also described, [44, Chapter 7], 

and illustrated, but without confirmed conclusions 
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6.2 FRACTURE AND FAILU^CRITERIA 

The minimal ingredients of a constitutive description 

of rock masses are the properties of the intact material, 

elastic or inelastic, a criterion for initiation of fracture 

in intact material, and conditions for sliding along newly 

formed and pre-existing fractures.  In addition, the presence 

of fluid within pores or fracture zones has significant 

effects which cannot be neglected. 

Tri-axial compression of a cylindrical rock specimen 

with dimensions of the order of an inch is the common labora- 

tory test for mechanical properties and fracture criterion 

of intact material and of specimens with single preexisting 

fracture planes.  Apparatus constraints limit the sliding 

displacement that can take place, and for larger displacements 

relative sliding between rectangular and triangular blocks is 

used  Effects of multi (parallel) fracture planes, at different 

orientation, are studied by "block models" formed from materials 

with properties qualitatively similar to rock but of lower 

strength for practical purposes.  Fracture and failure (sliding) 

criteria are commonly deduced as (idealized) relations between 

the shear and normal stresses across the fracture plane, and 

presented in terms of a Mohr stress representation, see for 

example [44, Chapter 2] and [CO. Chapter 1]. 

Following customary practice in soil/rock mechanics 

where mean stress is typically compressive. let the stress 

tensor a  be related to the traction  t  on a surface with 

outward normal  n  by 

t = - an (6.1) 

The n for rocks at depth the principal stresses  0}. a 11 

are  typ typically  positive   (compressive) *     For   simplicity  choose 

On ly here in Section VI is comp 
ression considered positive 
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cartesian axes Ox x x  along the principal stress axes such that 
1  2  3 

o  > a  > a . 
i —  2 —  3 

(6.2, 

Let  a , T  be the normal compressive and tangential stress 
n'  n 

acting on a plane with unit normal 

n = (n , n , n ) 
—        12     3 

(6.3) 

It can be shown^    *   that the stress state [a   .   T ) for any 

n  lies in one of the two curvilinear triangles bounded by 

the three circles in the Mohr diagram, Fig. 6.1.  The circles 

have centers  S , S , S  on the  a  axis with abscissae 
12   3 n 

s  = 7(a  + a ), s 
1^2       3 

1(0  + a ), s  ■ 1(0  + a ),   (6.4) 
^    ?       1       3^1       2 

and, respectively, radii 

i(ü  - a ), t 
^2      3      2 

J(o a ), t 
3       3 

•(0  - a ) .   (6.5) 

On the outer circle, for example, provided that there are ■ 
strict inequalities in Y-.q.   (6.2),  n  =0  and so 

n   =cosX.n  =sinA, 
1 3 

(6.6) 

o  = s  + t  cos 2X, T  = + t  sin 2A, 
n   2    2      '  n  - 2 

(6.7) 

defining the stress points  Q, Q'  in Pig. 6.1.  Similarly, 

n  = 0  on the circle with center  S  and  n  = 0  on the 
1 13 

circle with center  S , and analogous relations to Eqs. (6.6) 

and (6.7) hold. 

In the usual triaxial test  o  = o   (confining 
2      3 

pressure same in all lateral directions) and sometimes 

o  = a  when the axial stress is less than the confining 
1       2 

pressure.     For  the   former  case     t     =   0,   t       =   t       and     P r 12 3 2 
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Fig.   6,l--Mohr   stress  representation  and  fracture  criterion. 
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lies on  P , so that all stress states lie on the outer 
i 

circle. Again Eqs. (6.6), (6.7) hold for n lying in a 

plane Ox x' with Ox' any axis in the Oxx^ plane and 

n' 
1  3 

sin A. 

Adding an Isotropie pressure  p  to the stress state 

s  and leaves  t , t , t  unaltered, adds  p  to  s , s 
1     2 '    3 1 '   2     3 

so that the circles are simply translated a distance  p 

along the  Oö  axis. Fig. 6.1. 

Empirical data from fracture tests is commonly used 

to determine a relation between the values of  T   and  a n       n 
when fracture is initiated, that is, to determine a Mohr 

criterion, [ 44, Chapter 4], 

IT I = f(a ). 1 n'    ^ n^ (6.8) 

For smaller values of IT   at the given value of  0   fracture 1 n'       6 n 
does not occur.  Sets of values (0 , a , a ) at which 

1   2   3 

fracture is initiated determine a sequence of (outer) Mohr 

circles tangent to the symmetric curves represented by 

Eq. (6.8), which are therefore Mohr envelopes to the circles. 

The curves cannot intersect the circles, otherwise there are 

stress states (o ,T ) for which IT | exceeds the critical n n ' n' 
value given by Eq. (6.8).  The curve TCBA in Fig. 6.1 

typifies a Mohr envelope tangent to the Mohr circle shown 

at  B.  It is clear that this criterion is independent of 

the intermediate principal stress  o  which does not in- 
2 

fluence the outer circle.  The orientation of the fracture 

plane is given by the angle  ß where n = (cosß, 0, sinß) 

and  2ß  is the angle  P S B determined by the value of 
1 2 

o , a       and Eq. (6.8).  A conjugate fracture plane is given 
1   2 

by the corresponding negative values for ß.  For 
2   3 

the interpretation n' = sinß  applies.  The sign of  T 

determines the direction of subsequent relative sliding 

across the fracture plane. 
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The intercept  OT  represents the fracture strength 

in isotropic tension and OC  represents the strength in 

pure shear.  The strength in uniaxial compression and uni- 

axial tension are given by the diameters of the circles 

tangent to the envelope and tangent to the 0Tn  axis on 

the positive and negative  an  sides respectively. 

A special case of the Mohr criterion is the linear 

Coulomb-Navier law 

n T + 
o 

pa n 
(6.91 

The strength at zero normal stress is M =   ^Q*   called 

the cohesion, represented by the intercept  OC  in Fig. 6.1. 

The proportionality constant  u, represented by the slope 

of the envelope, is called the friction coefficient--a 

misnomer since it is a property of intact material.  An 

approximate linear fit to data is often deduced for moderate 

values of  o , with the envelope TCBA becoming concave 

to the  a  axis for increasing  o , as illustrated in 
n u 

Fig. 6.1. 

A simpler form of Eq. (6.9) is the Tresca condition 

associated with plastic yield in metals, namely 

= T (6.10) 

but this neglects the significant dependence on  on  in 

practice.  An alternative simple law is the requirement that 

the minimum principle stress is negative and equal in 

magnitude to the tensile strength, again not in general 

agreement with the data.  A mathematically smooth law can 

be obtained by postulating an analytic condition on the 

stress invariants, which involves all principal stresses, 

but the Mohr and Coulomb-Navier criteria exhibit most over- 

all agreement with data. 
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When there is an existing fracture plane (plane of 

weakness) then failure (used here to denote sliding along 

this plane) may or may not occur before fracture along in- 

tact planes, depending on the orientation of the existing 

fracture plane with respect to the principal stress axes. 

It is commonly deduced from empirical data that the criterion 

for initiation of sliding has the linear Coulomb-Navier form 

of Eq.  (6.9) with different (lower) values of cohesion 

and friction than the fracture law for low o : n 

h n T  + u a . s   ps n (6.11) 

A typical law is represented by the line GFE in Fig. 6.2, and 

stress states for the case  a  = o  lie on the Mohr circle re- 
2       3 

presentation as shown.  F  and  E  are the points of intersec- 

tion of Eq. (6.11), positive  T , with the circle.  If the normal 

to this fracture plane makes an angle  a with Ox , then if 
i 

otp < a < oip  sliding occurs, but otherwise sliding does not 

occur.  In the latter case, if the circle touches the Mohr 

envelope for fracture (between E and F), then fracture on 

the appropriate intact plane occurs, while in the former 

case intact fracture does not arise if the circle lies in- 

side the Mohr envelope.  Thus, failure by sliding on the 

existing plane of weakness or fracture of intact material 

are both possible first events as the loads are increased, 

the choice depending on the two laws, Eq. (6.9) or (6.8) 

and Eq. (6.11), and the orientation  a.  The situation for 

o  > a  > o   is described in [44 . Chapter 3]. 
1       2       3 

Once fracture of intact material has taken place 

then the condition for subsequent sliding is Eq. (6.11) — 

or other appropriate law.  Thus for x  < x , u  < y,  the s    o   s 
stress reached at fracture cannot be maintained for moderate 

a and is reduced locally to satisfy Eq. (6.11) with a non- 

homogeneous redistribution of stress through the material. 
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Fig.   6.2--Mohr  circle  and   sliding  criterion, 
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This is termed brittle fracture, [ 44 , Chapter 6] and is 

illustrated by the lower axial stress-strain curve shown 

in Fig. 6.3.  As confining pressure, and hence on, in- 

creases, the sliding law line GFE, Fig. 6.2, will approach 

and intersect a concave Mohr envelope and a continuous 

sliding response occurs, referred to as "ductile" by ana- 

logy with metal plastic flow, depicted by the niddle curve 

of Fig. 6.3.  With further increase of  an  the upper curve 

(analogous to work-hardening) is typical, mainly the result 

of sliding across multiple intersecting fracture planes. 

The brittle-ductile transition point, measured by the 

confining pressure (or normal stiess) at which the stress 

drop ceases is found to decrease with increase of tempera- 

ture. 

An alternative response under moderate and higher 

confining pressure ia "stick slip"
[ 61 ] when the relative 

motion on new and existing fractures lb accompanied by 

stress drop, then ceases until the stress is again raised 

to initiate sliding with stress drop, and so In sequence. 
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Fig. 6.3--Axial stress - strain curves for varying 
confining pressure  o  = a . 

. 2       3 
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6.3   TESTS AND DEDUCTIONS 

The common laboratory test is triaxial compression 

of a cylinder with diameter at most a few inches and aspect 

ratio between 2:1 and 4:1 (Fig. 6.4).  Confining pressure 

is Isotropie, a     = o .  The two independent stresses 
2       3 

o , a  allow fracture and sliding criteria to be interpreted 
1     3 

in terms of shear and normal stress on the fracture plane. 

In principle such data can be fitted to an infinity of 

criteria involving three independent stresses, for example 

three stress invariants, and a three-dimensional theory 

would require additional supporting evidence. 

A variety of rocks have been vested1        for 

fracture of intact material followed by sliding along the 

fracture plane, and sliding along existing fracture planes, 

with smooth and rough surfaces.  Large displacement sliding 

over larger areas between rectangular and triangular blocks 

is also reported.^o6l  Recently^68  69^ biaxial loading 

of a slab with cross-section approximately 4x7 inches 

and an inclined sawcut has been achieved with approximately 

uniform traction on the fracture surface and with slip 

displacements up to an inch.  Direct measurements of 

relative displacement parallel and normal to the fracture 

surface were made. 

The direct shear tests on granite and four rock 

minerals described in [ 62 ] were performed at constant 

slide velocity 0.02 mm/sec, over a normal stress range of 

0 to 0.15 kbar and a Centre Line Average (roughness) range 

of 2.5 to 30 x 10"2 inches.  No evidence of intra-granular 

(plastic) flow was observed in the debris produced by 

sliding and it was concluded that slip occurs by crushing 

of asperties (brittle fracture) with possible lift over 

asperities at low normal stresses.  For the rough granite 

surfaces the data for slip initiation was approximated by 
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Fig.   6.4--Triaxial   compression, 
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T  = 1.3 o  (Ü < a  < 0.06 kbar) n      n v    n — 

T  = 0.03 + 0.8 a  (0.06 < a < 0.15 kbar) 
n n ^    - n 

(6.12) 

implying negligible cohesion  T   at zero normal stress. 

Stick-slip (sudden slip with drop in  T , stick until  T r- v t        r     n n 

increased to a new critical value) was pronounced for the 

rougher surfaces. 

Triaxial testing of granite with a fully interlocking 

rough fracture plane under high confining pressure was de- 

scribed in [63 ].  The inclination of the plane to the 

major principal stress axis varied from 20° to 35° and the 

deduced slip criterion was 

T  =0.5 + 0.6a  (2<a  <17 kbar) . n n ^  — n —       J (6.13) 

This relation does not necessarily extrapolate to  a  = 0 7     r n 
to imply  T  = 0.5 kbar, but the slope value  y  = 0.6 

differs from the value 0.8 at the upper end of the range 

in Eq. (6.12).  However, at  a  =2 kbar, x fa     ■ 0.85, -\     K J , n        *  n n      ' 

which suggests a smooth slightly non-linear interpolation 

between Eqs. (6.12) and (6.13).  It was also noted that 

T /a       decreased slightly on critical slip and became n n s  / i 
effectively constant after 1 cm slip.  During sliding the 

surface went through a rough-smooth-rough sequence. 

Effect of machine stiffness and strain rate on the 

stress drop in stick-slip were investigated for a variety 

of rocks with smooth and rough jointsL  J  and found to be 

negligible.  Stick-slip was absent in highly porous rocks 

(tuff) and rocks containing calcite and serpentine.  The 

latter are common fillers in naturally occurring joints, as 

also water, and all these decrease the amplitude of stick- 

slip significantly from values observed in laboratory 
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testing.  This amplitude reduction has been noted in 

[54 1, [67 ], [09 ] and [ 70 ].  It is also decreased 

by increase of temperature. 

The brittle-ductile transition of a variety of intact 

rocks was investigated in [65 ], measured by the normal 

stress (or confining pressure) at which the stress drop on 

fracture and initial slip ceases, recall Fig. 6.3.  A 

smooth  T -o  (or  T -p) curve was shown to separate 

(approximately) domains of brittle and ductile response 

of the variety of rocks tested.  It was also concluded that 

the friction (slip criterion) was independent of the 

intermediate principal stress (here  02 - ^ < ^  and the 

situation a  < a  < a   is not considered). 
3      2       1 

A variety of tests on many rock joints are described 

in Ref. [ 66 ] and values of  TS, ys  associated with the 

linear slip criterion of Eq. (6.11) deduced.  A range 20 to 

1000 psi is reported for  TS  and 0.32 to 0.85 for  us. 

Stick-slip was observed on the smoother surfaces, during 

initial slip and sometimes after finite displacement which 

is presumed to smooth out the surface.  Slip on inclined 

intersecting conjugate surfaces was also investigated, and 

non-symmetric response observed - continuous sliding on 

one surface and large stick-slip on the other.  Here there 

are complications of non-identical surfaces and non-symmetric 

geometry and loading -all of which occur in practice. 

Tests on ground surfaces of Westerly granite up to 

normal stresses of 1 kbar1    J showed that stick-slip was 

always preceded by a small amoount of sliding, suggested as 

a possible pre-monitoring effect for earthquakes.  Measure- 

ments of normal displacement across the fracture surface 

were made to test the "ride over asperities" explanation for 

this stable sliding, but results indicated that no normal 

displacement was taking place.  A range of 0.4 - 0.5 was 

observed for  x /o  at initiation of slip, but after 
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about 1 cm of sliding, with generation of gauge, a steady 

frictional behavior at the level 0.5 occurs.  The stress 

drop factor  &T /T  associated with the stick-slip appears 

to increase with  r   initially but drops to the level 1 

percent to 2 percent with generation of gouge.  Tests over 

the strain rate range 10'k   to 10-8/sec implied that  T /a 
n n 

increased approximately logarithmically with time of 

contact fdecreased with increase of strain rate). 

In the direct shear tests on a number of rocks^  ' 

the dynamic friction  ^/c^  for rough surfaces increased 

with accumulation of gouge during initial stable sliding. 

Subsequently, stick-slip occurs and the static friction 

^n^n  for initiation of new slip) is time dependent, in- 

creasing with the contact time during stick (controlled by 

the applied loading).  Contact times from 1 to K)5 sees 

were used, and an approximate law  y, = y  + Alog  t ft > 1 

sec) deduced where here  u  = T /c .  For example, for 
^       i 1    11 

granite at  a  = 58 bars. Uo = 0.708, A = 0.021; and at 

694 bars,   y o   0.787, A   0.018; the increase of \i       over 

105 sees is about 0.1 

171 1 
Recently1     techniques to determine frictional and 

deformation properties of in situ jointed specimens have 

been developed and applied to Cedar City Quartz diorite, 

with surface areas ranging from 22 to 795 square inches. 

Comparisons are then made with laboratory test data on 

small samples of the same material.  Roth initial and 

residual  shear strengths were found to decrease with in- 

creasing surface area of the joint, a result suggested to be 

related to a roughness-contact area properties of natural 

joints.  Above 350 square inches, the residual strength was 

relatively constant.  Both initial and residual friction 

coefficients decreased with normal stress and slip displace- 

ment.  In the laboratory tests, the initial coefficient 
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increased slightly while the residual coefficient decreased 

slightly with normal stress.  It is pointed out that 

friction is a function of contact area ana strength of 

asperities, and mating of asperities on relatively smooth 

surfaces can induce higher friction that between rougher 

surfaces.  Also properties of filling material can over- 

shadow normal stress and area effects.  Joints dilate 

at low normal stress during shearing, but not at higher 

normal stresses (600 to 1500 psi).  Properties of jointed 

and intact specimens are similar before joint shearing 

for specimens tested, but it was noted that for filled 

thick joints the filler material properties could have a 

significant effect on both initial and slip properties. 

In addition, some tests on multiply jointed specimens 

were made, parallel and intersecting, as a start to testing 

"block structures" in natural rocks.  Strength was found to 

be controlled by the joint most "unfavorably" oriented with 

respect to the load, and slip on the other joints only 

occurred after the first joint was locked against an 

adjacent block. 

Interpretation of laboratory data from triaxial tests 

essentially relates mean stresses over the joint surface. 

Prior to slip, during elastic deformation of the cylinder, 

stresses may be reasonably uniform away from the ends of the 

specimen, and mean stress adequately measures locil   stress 

over the major part of the joint.  The criterion deduced 

for initiation of slip can therefore be regarded as reason- 

able local conditions.  Once slip is taking place, with 

shear and normal tractions on the joint satisfying a slip 

criterion, the stress in the separate elastic sections 

cannot in general be uniform (the unique uniform stress 

solution for equilibrium will not satisfy the slip criterion 

uniformly over the joint), so it is mean stress relations 

that are determined.  When the high accelerations associated 
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with stick-slip arise, mean stress estimates must take the 

momentum balance into account, and various assumptions re- 

garding energy partition into work done on asperity crushing 

(surface energy release), heating, block deformation, are 

made to calculate velocities.  Criterion for continued 

slip are then less certain than those for initiation, and 

it is difficult to deduce a "cohesion function" (introduced 

in the later continuum model) and dependence on slip. 

Since the data are generally two-dimensional, effects 

of a transverse stress in the slip-plane are not observed. 

At constant confining pressure this varies with the applied 

side load, and is not varied independently; in plane stress 

it is zero.  Transverse stressing (and straining) could 

affect roughness and interlock of asperities, and so in- 

fluence the frictional properties, but there is i.o quanti- 

tative evidence at present.  It seems reasonable though to 

assume that, instantaneous slip takes place in the direction 

of the maximum shear traction, as adopted in the continuum 

model to be described later. 

The real in-situ situation involves rock masses with 

multiple intersecting fracture planes, creating a block 

structure.  The complex interaction of slips on many planes, 

particularly intersecting planes involving block interlock, 

probably causes highly non-uniform redistribution of stress 

in the intact block material between joints.  It is there- 

fore likely that slip mechanisms on single (uncontrained) 

joints is inadequate to describe the multiple joint and 

block structure situation, and observations on the response 

of bodies containing different multiple joint patterns are 

needed as the basis of a heuristic treatment.  This view 

is taken at Terra-Tek (Salt Lake City, Utah) where they 

propose such experimental programs on natural rocks, con- 

tinuing the work reported in [71].  It is also thought 

that the "interlock resistance" will dominate prior joint 
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slip, at least for high confining pressure when block offset 

is small.  The most elementary interaction is between the 

motions on two intersecting cross joints, depending on 

relative orientation and orientations with respect to 

principal stresses.  Then the effects of two and more 

joints within each parallel set must be determined, and in 

particular the sequential behavior of motion on respective 

joints. 

Previous experimental work on block structures is 

largely concerned with specimens prepared from plaster type 

materials in order to simulate the slip and fracture response 

at low stress levels, and to facilitate the preparation of 

joint surfaces.  While care is taken to reproduce qualita- 

tively many of the required rock properties, it is not 

clear that the ovorall complex response of jointed natural 

rock masses is even qualitatively the same.  Reference [51] 

deals with two orthogonal joint sets loaded in plane strain 

for different ratios of axial load to confining pressure. 

Failure of the intact blocks and joint slip are both 

observed.  Finite element calculations are compared with 

data.  Constant confining pressure triaxial tests are re- 

ported in Ref.  72   for one and two sets of parallel joints 

at different spacings.  Failure of intact material and joint 

slip are observed, and also dilatancy at low pressures.  The 

failure envelope for the intact material is found to be 

lower (as measured by applied loads) when joints are present, 

but undergoing no apparent slip, suggesting that joints are 

influencing the stress distribution.  The strength (of 

intact material) increases with increase of spacing in each 

joint configuration.  Also the brittle-ductile transition 

point changes as joint configuration an 1 spacing changes. 

An extensive program of tests in plane stress is described 

in Ref. [ 73 ].  Axial load is increased by increments of 

25 psi, and side load first incremented then held constant- 
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Various procedures are used to measure strains, and the 

significant non-uniformity (hence stress concentrations) 

is demonstrated.  Intact and jointed blocks are compared, 

and joint orientation is varied.  Failure of intact blocks, 

joint slip, and joint dilatation are observed.  Block 

structures containing lined and unlined cylindrical cavities 
r 7 d i 

have been tested.1  J  Joint dilatation is important 

at free boundaries.  Generally, joint dilatation is rele- 

vant only at low depths when confining pressures are low, 

or at free boundaries of tunnels, and does not occur at 

depths when pressures are high.  Past methods of block 

structure and joint simulation have been recently criti- 
,[ 75 1   , 

cizedL     and an alternative method described.  Joint 

characteristics are discussed and their importance in 

calculating overall response of a block structure.  In 

particular, linear superposition of "elastic joints" on 

"elastic blocks" is criticised and the irreversible character 

of joint deformation is emphasized. 

Of great practical importance is the influence of 

water (and occasionally oil) generally found in porous 

and cracked rock.  In the presence of water at po:e pres- 

sure p, the failure and slip criteria are found to take 

the same form provided that stress is replaced by an 

"effective stress" 

<o> = a P 1 (6.14) 

This "conventional" effective stress leaves shear traction 

on any plane unchanged but subtracts pore pressure from the 

compressive normal traction.  Thus the linear Coulomb slip 

lav in hq. (6.9) becomes 

n - T  
+ u(a 

o     n P) • (6.15) 
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The empirical result Eq. (6.14) is continually verified by 

experimental observation in regard to failure criteria, and 

applied over wide ranges of porosity, and porous structure 

ranging from fine plane cracks to random distribution of holes. 

It differs significantly from the effective stress 

introduced in Section V (and in Ref. [76 ]) to describe 

deformation response oT saturated porous solids to 

applied stress, namely. 

(a), 0/( 

7 
(a) /(a) 
a / m  (a 1, 2) 

(a) 
where  m  is the sc. ..r factor depending (at least! on t 

(ct) 
deformation of both solid matrix and fluid, and  o  are 

^  (a) 
the partial stresses in the matrix and fluid.  When  a , 
(a) a e are interpreted as mean stresses (volume averages) in 

the solid and fluid over a representative element containing 

many pores, the relation 

(6.16) 

he 

(a) 
m 

(a) 
n (6.17) 

(a) 
n can be deduced where  n   is the volume fraction of solid 

or fluid respectively in the mixture (this result does not 

rely on isotropy in any form), so that the porosity (volume 
(2)     (1) 

fraction of pores or fluid when saturated) is  n = 1 -n . 

Using Eqs. (6.16) and (6.17), the Coulomb law would become 

or 

(1) 
T n 

(1) 
n T 

(1) 
+ U a o     n 

(1) 
n n T  

+ y [a  - (1 o    l n   v 
(1) 
n)p] 

(6.18) 

(6.19) 

where  x , a  are the total stresses given by n  n &     / 

L 
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CD   (2) 
0=0  +  0 (6.20) 

Equation (6.19) approximates Eq. (6.15) only for very high 

porosity (^-)<< 1) and at stress levels for which  ^  is 

insignificant.  It is not in agreement with failure data for 

normal porosity ranges, as can be expected since the mean 

stress interpretation of  o e  excludes application to 

localized phenomena governing failure.  The purpose of 

Eqs. (6.16) and (6.17) is to describe mean stress-deforma- 

tion response on length scales greater than pore spacing, 

for which Eq. (6.14) appears to have no basis. 

These effective stress measures, and others, are 
[771 

compared and discussed by Garg and Nur.1      In particular, 

the deduction^ 78^  of a special case for infinitesimal 

strain of a porous elastic rock is analyzed and shown to be 

of doubtful validity.  An illustration of Eq. (6.14) is 

given by interpreting failure in terms of minimum circum- 

ferential stress at a pore boundary.  An infinite slab 

subjected to uniaxial tension, and containing a transverse 

cylindrical cavity, has a maximum circumferential tensile 

stress increased by the pore pressure  p  in the cavity. 

Thus, if a compressive stress  S can be reached before 

failure, then this is attained by a boundary load  S-p. 

This result is obtained only for a single pore of cylindrical 

geometry, in plane strain deformation of a linear elastic 

matrix, and influence of the matrix deformation on pore 

fluid deformation is neglected. 

The explanation offered for Eq. (6.14) in the classical 
r 581 

paper by Ilubbert and Rubey l     is invalid.  It is 

essentially a circular calculation describing the net forces 

acting on solid and fluid respectively within a body of 

mixture (the solid matrix is supposed to support normal 

pressure only, and not shear traction, but this assumption 

232 

  -fc^^,-,-^.^^^^. ^^j^^M*| 



!■ HI "",  " ^^ 

is irrelevant to the argument).  During the calculation an 

implicit assumption is made regarding the partition of 

traction between solid and fluid, namely, in the mixture 

notation of Section V, 

(l)e  C2)e 
P  ■ P 

(6.21) 

that is, effective pressure balance.  Here p  is^total pres- 

sure  p)e  is effective fluid (pore) pressure,  p «  is 

matrix effective pressure.  Thus  Ve ^  actually assured to 

be the total pressure p - unchanged by the oore pressure - 

and support for Eq. (6.14) is not clear. 

Finally, we conclude with a qualitative proposal made 

by Dr. J. D. Byerlee in private discussion.  The mixture 

analysis attempts to partition traction between solid and 

fluid on a fracture plane.  Byerlee suggests that th« real 

solution is fluid permeating gaps between mating asperities 

and thus exerting lateral forces on the asperities which 

influence their shear and slip.  The contribution p  in 

Eq. (6.14) may well be a consequence of such lateral 

effects. 
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6.4 BLOCK STRUCTURE AND MOTION 

In many applications we nre interested in length scales 

much larger than the block dimensions, which can be inches 

to several feet.  That is, boundary loading may have small 

gradients over these dimensions, or dominant wave lengths of 

motion may be much larger.  In such situations it is useful 

to explore a continuum approximation which smoothes out the 

discontinuous or high gradient relative motion across 

joints.  Within this framework it should be possible to pro- 

ceed analytically with simple problems and perhaps draw out 

general features of more complex situations.  Furthermore, 

the continuum equations may lead to more compact numerical 

solutions than detailed finite difference or finite element 

code calculations over these larger length scales.  They 

should at least complement and reinforce direct numerical 

procedures on the gross scale. 

First consider the block and joiu., structure.  It is 

supposed that the rock mass contains one or more sets of 

regularly spaced parallel joints, with at least two sets if 

there is a real block structure.  Figure 6.5 shows a two- 

dimensional illustration of joint sets and block structure; 

sets need not be orthogonal.  The orientation of a given set 
(unit normal vector) is n, its spacing is  d, and "joint 

thickness" is 5.  Both  d and  6  may vary between sets, but 

it is assumed in the continuum approximation that n, d,  6 

for a given set are approximately uniform over a representa- 

tive region (a few block dimensions) which is small compared 

with the gross length scale of interest.  Joint thickness  <S 

is not a precise parameter, but measures the approximate 

asperity height (roughness) of the block surfaces or an 

approximate thickness of filler material.  In all situations 

for which the concept of block and joint is relevant 
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Fie.   6.5--Joint  sets  and  block   structure   (6   <<   d). 
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6 << d, (6.22) 

and  6  arises in the continuous description only in the sense 

of Eq. (6.22) . 

Bach block will separately undergo continuous motion 

(displacement), but in view of the magnitude comparison in 

liq. (6.22) the structure of the motion (deformation) within 

the joint thickness can be neglected and the presence of 

the joint described by relative velocities (displacements) 

across the joint regarded as a plane surface (zero thickness). 

This is also the standard assumption of finite difference 

and finite element analyses.  Across each joint then there 

are possible discontinuities in the tangential and normal 

velocities (displacements) of the overall motion.  The 

former define slip at the joint, and the latter dilatation 

(opening) or contraction.  In general the initial confining 

pressures are sufficiently high that subsequent dilation 

does nut result in actual separation, except perhaps at 

boundaries of cavities within the rock mass. 

Commonly slip will be much more significant than 

dilation (contraction) - see for example the detailed des- 
ryg i 

cription of joint types1 '    and illustrative data showing 

a relative magnitude of 100.  In view of this common rela- 

tive magnitude, and for clarity, our constitutive description 

will be presented for joint slip alone, assuming that normal 

displacement is continuous across the joint.  Inclusion ot 

dilatancy within the same framework is straightforward but 

its relevance will depend on availability of good data. 

lVikh a single joint set, slip at each joint is in 

principle unrestricted (by block structure), but in practice 

will be constrained by surrounding material at joint ends. 

Furthermore, with more than one joint set, the ususal situation. 
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slip will be restricted by block interlock when joint misalign- 

ment arises due to slip on transverse joints.  It is convenient 

then to regard 6  as an order of magnitude of an upper bound 

to the net slip, but this is not an explicit restriction of 

the theory.  If a joint layer were to be considered, then 

slip of magnitude 6     over thickness  6  implies a finite 

shear deformation gradient and distinction between a spatial 

and material coordinate description.  In particular new 

positions of particles initially opposite across the joint 

are finitely separated.  However, with the relative magnitudes 

satisfying Eq. (6.22). slip of order  6  on the length scale 

d is small.  Furthermore, with this restriction on boundary 

displacements of separate blocks, deformation and rotation 

within the blocks is also small and hence overall displacement 

gradients are small on the length scale  d after eliminating 

any net rigid body motion.  Thus over a representative region 

we can regard the displacement gradients as infinitesimal and 

identify current and initial positions of all particles.  In 

particular we can evaluate field variables at a single point 

on the joint to refer to initially opposite particles in 

the adjacent blocks. 

Now consider for clarity a single joint set defined 

by the parameters (n, d,6).  Effects of other joint sets are 

given simply by incorporating the analogous joint fields 

with associated parameters.  Let n denote distance along 

n measured from some fixed origin on the negative n-side 

of all joints, and denote the slip (tangential displacement 

discontinuity) at a point X. on the joint at distance n^ 

from the origin by U.U.). "'ihen at a position x in the 

interior of some block at normal distance n  from the origin, 

the displacement can be expressed in the decomposition 

u(x) ■ uc(x) +2 UjUj) H(n - n.) (6.23) 
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where  uC(x) is a continuous field and  H(n)  is the Heaviside 

step function. 

When U.(X.)  is non-uniform along the j-joint, then 

the in-plane displacement gradient, and symmetric-skew de- 

composition , 

V U. = E. + Q. 
n-j  ~j  -j (6.24) 

define the relative strain E.  and rotation ß.  of elements 

in adjacent blocks.  Both E.  and 0.  are infinitesimal 

tensors.  Thus the strain and rotation at the point x in 

the interior of a block are given by 

eb(x) = eC(x) +]C?j(V H(n " V' 

(6.25) 

u)b(x) ■ uC(x) +^?j(Xj) H(n - nj)- 

j ; 

It must be emphasized that the property of infinitesimal 

displacement on the length scale of joint separation is 

crucial to the simple additive decompositions in Eq. (6.25). 

In particular the block strain e   is uncoupled from rota- 

tion jumps  fj.  across the joints. 

The mechanical response of the intact block material 

relates the current stress  a(x,t)  at an interior point  x 

to the block strain history  eb(x,t'), recalling that any 

net rigid body motion is first eliminated.  Thus 

o(x,t) = '/'[el (x,t'), t'   t] (6.26) 
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where 2   is the constitutive functional.  The common assump- 

tion, and a good approximation for many pratical applications, 

is that the blocks have Isotropie elastic response, when Eq. 

(6.26) becomes 

■ a (x) - 2Geb (x) + (K - ^G) tt  [eb (x)]l (6.27) 

where K, G are the bulk and shear moduli respectively. 

This elastic response will be adopted in a later illustration. 

Time dependent viscoelastic response or rate-independent 

elastic-plastic response may also be relevant block models, 

and can be incorporated by appropriate choice of 2    . 

Note that the usual rock mechanics convention for 

stress is adopted - principal stress positive in compression - 

so that the traction or any surface with outward unit normal 

n is 

i(n) 
an (6.28) 

In particular the normal and shear tractions are 

a = i(n) '2. = Con) -n 
(6.29) 

T = t, ^ + on = (al - a)n . 
±  -(n)   -    ~  ~ 

For momentum balance a     and  T  are continuous across a 

joint but the in-plane stresses may be discontinuous, and in 

fact will be discontinuous when there are non-zero relative 

in-plane strains  E.. 

It is generally supposed that slip at a joint is 

initiated when the shear traction magnitude reaches a critical 

value which depends on the normal traction [ 44, Chapter 5]. 

Thus an initial slip criterion is written (see Section 6.2) 
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^1 = TO + g(a) (6.30) 

where  x (> 0)  is the cohesive stress,  gCO) = 0, and 

g'(a) > 0.  That is, the joint will support a shear traction 

T  at zero normal traction, due to its roughness, and the 

resistance to slip increases as the joint is compressed.  TO 

may be small and possibly negligible compared with applied 

stress levels.  The common simple model found to be in 

approximate agreement with many data is the linear Coulomb- 

Navier law 

TI - T + yo , 
n 

(6.31) 

where y(> 0)  is called the friction coefficient.  This 

linear law will be adopted in the later illustration. 

The criterion in Eq. (6.30) explicitly excludes depen- 

dence on the in-plane stresses.  It is feasible that the 

associated in-plane (continuous) block strain prior to slip 

may influence the "roughness" of the joint and hence the 

criterion. This is an area for experimental investigation, 

but at present intuitive theoretical proposals would lack 

verification (see Section 6.3). 

Initial slip is assumed to take place in the direction 

of the shear traction.  Let  v be the unit in-plane vector 

such that 

T = TV ,  T = |T|, v-n = 0, (6.32) 

then the slip velocity U  can be expressed 

U = Uv , U > 0. (6.33) 

The many accounts of two-dimensional experiments do not 

comment on the occurence of any transverse (in-plane) slip. 
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but do not report its absence.  However, the proposed re- 

lation in Eq. (6.33) is emminently reasonable. 

The ideal-slip theory assumes that the criterion in 

Eq.(6.30) continues to hold during slip which is governed by 

the validity inequality in Eq. (6.33).  If the loading will 

not sustain slip in the shear direction, then slip ceases 

and transverse velocity becomes continuous across the joint. 

Thus 

x E T  + g (0) ,  U > 0, 
0 

T < T   + g  (0)     0=0. 
0 

(6.34) 

Slip is not reversed on unloading but only when the shear 

traction reaches the critical magnitude in the opposite 

direction.  This is therefore an irreversible mechanism and 

the overall response of the jointed rock is necessarily 

inelastic even when the intact block material is elastic. 

In this ideal slip theory neither U nor U  is explicitly 

determined by the stress, only the direction of slip, and 

the magnitude is restricted only by kinematic constraints. 

In practical situations inertia of surrounding material will 

usually inhibit unbounded slip on a single joint, and in the 

block structure interlock will be a strong constraint. 

Continued sliding on a single joint in triaxial tests 

at constant confining pressure may occur at (approximately) 

constant axial stress (the above ideal slip theory), may 

require increasing axial stress (slip hardening), or may be 

accompanied by sudden drop of axial stress (brittle response) 

The latter behavior is not common for very rough surfaces 

and particularly after gouge has been generated, and for a 

block structure such sudden slip will be inhibited.  Harden- 

ing with sliding due to surface change will be much less 
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significant than increased resistance due to misalignment 

of the joints (block interlock).  While a finite difference 

or finite element analysis can track the displacements of 

block corners and incorporate interlock conditions, the 

subsequent continuum approximation needs to express this 

requirement in some mean sense. 

Resistance to slip in the current shear direction  v 

will depend at least on the current slip in the v-direction 

since this measures in some mean sense what further slip 

in that direction is possible before blocks overlap.  The most 

simple proposal to reflect this idea is that resistance to 

slip in the v-direction depends on a single hardening 

parameter 

q = U • v/6 (6.35) 

and in fact increases with positive  q.  The maximum magnitude 

of q  is 0(1) in view of the displacement bound.  If q  is 

negative then the slip is back towrrds a central position 

which should not be resisted by interlock.  Thus we introduce 

a cohesion function  f(T,a)  such that continued slip requires 

f(T,a) = F(q) (6.36) 

where 

F'(q)< 

0, q   0, 

= 0, q < 0. 

(6.37) 

Figure 6.6 illustrates such a hardening function  F(q), not 

necessarily asymptotic to q = 1 since the "joint thickness" 

5  is not a precise quantity.  In practice we expect that 

the stress levels as  q -* 1 are sufficiently high for the 
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Fig. 6.6--Slip hardening due to block interlock. 
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present intact block-joint slip theory to fail.  The dashed 

lines illustrate the limit case of ideal slip with total 

interlock at q ■ 1. 

The cohesion function  f(T,a) defines the current 

slip criterion and clearly at initial slip (q = 0) the criteria 

expressed in Eqs. (6.30) and (6.36) must coincide.  This how- 

ever does not provide a unique relation between  g(ö)  and 

f(T,a).  For example, with the criterion Eq. (6.31), we can choose 

f(T,o) T - yo F(0) - To , (6.38a) 

or 

f(T,0) ±  ,   F(ü) (6.38b) 

In the former choice the cohesive stress then becomes the in- 

creasing function F(q)  while in the latter the friction 

coefficient became the increasing function  F(q).  Considerably 

more evidence from block model experiments will be required 

to test these simple proposals and select, if possible, 

appropriate hardening and cohesion functions.  The most 

simple choice for subsequent illustration is the linear func- 

tion (6.39a); (6.39b) introduces non-linear stress dependence. 

It should be noted that the hardening law in Eq. (6.36) 

is anisotropic, since q depends on the current shear direction 

v  in relation to the current slip displacement  U.  Since 

U(t) =J      U(t')v(t') dt'. (6.39) 

and over a general slip history v(t') varies, the directi 

of U(t) is not determined by v[t). Differentiating Eq. 

(6.36) : 

6f = F'(q) |U ♦ U • V ] , 
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and hence for q > 0, 

I) F%-^ ^  ^0 
(6.41) 

which determines Ü  in terms of  T_ and a  at a given 

stress state T_,O .     The validity inequality does not require 

that the cohesion function f  is non-decreasing since 

U • v may be negative.  By Eq. (6.40) the case  £ < 0 

implies q < 0  so that the change of slip direction defined 

by v  is towards a direction of decreased resistance.  For 

q < 0  ideal slip occurs with  U not determined explicitly 

by the stress and stress rates, but with the stress criterion 

identically satisfied: 

q < 0 , f(T,a) =   F(0). (6.42) 

Thus, in particular, the initiation of reverse slip is not 

governed by previous hardening in an opposite direction. 

Further, reverse slip will decrease q and hence lower the 

resistance to subsequent slip in the positive sense.  These 

are features of the anisotropy of block interlock kinematics. 

Finally we can note that the block strain given by 

Eq. (6.25) incorporates the in-plane gradients of U  which is 

governed by the joint slip mechanics entirely independent of 

the constitutive response of the block material, Eq. (6.26). 

A strong coupling between joint slip and block response 

arises in consequence.  The case of several parallel joint 

sets will be described in the continuum approximation. 
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6.5 CONTINUUM APPROXIMATION 

If the length scale of boundary load variation, or 

dominant wave length of a propagating disturbance, is much 

longer than the block dimension then we can expect little 

stress variation over a representative region covering a few 

block dimensions.  In this situation it is reasonable to 

regard the tractions and relative displacements occuring in a 

given time interval on  r  consecutive joints, and over in- 

plane lengths of order  rd, as approximately uniform.  In 

particular, restricting attention to slip at joints, the net 

slip over  r  joints is 

(6.43) 

where [J is the mean slip over the  r  joints. 

On length scales large compared with  rd  the actual 

discontinuities  U.  and the joint locations will be unimpor 

tant, and we are concerned only with the net slip over a 

representative distance.  Thus, we introduce a continuous 

slip displacement field us(x,t)  associated with the joint 

set of orientation n which determines the same net slip. 

That is, 

3u- 

an" 
r^  1 - (6.44) 

where Eq. (6.44) strictly defines a mean of the normal gradient 

of u  over the representative distance  However  9us/'dn 

is considered uniform over the representative distance when 

viewed on our gross length scale.  Recall also that initial 

and current direction of the joint normal are identical on 

this scale so that the normal derivative is evaluated in 

the initial configuration. 
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In the ideal slip theory the slip criterion in Eq. 

(6.34) applies to the mean stress in the representative 

region, that is the local stress on the gross scale, with 

the continuous slip velocity direction given by the shear 

traction direction, thus 

3u- •S    'S dU     n 
T = T  + g(a) , u = u  v , T^ > 0, 

(6.45) 

T < T 
+ g(a) , 

0 

3U" 
9n 

= 0. 

For  the  slip-hardening  theory  described by  Eqs.   (6.35) 

through  (6.42)   we must  first  relate  the hardening parameter 

q     to  the  continuous   field    uS.     A mean value  of     q     for  the 

representative  region,   by  Eq.   (6.44) ,   is 

- 4- IT d  *£ 
Jl '  1= IW 

(6.46) 

and the current value of  3us/3n is given by a time integral 

of  3uS/3n  analogous to Eq. (6.39).  Hence, during slip with 

q > 0, Eq. (6.36) holds and analogous to Eq. (6.41) deter- 

mines 
5 

1__ - -Z^. . v  > 0. (6.47) 
3n dF'(q) 

The joint spacing d now enters explicitly, with different 

values possibly for different joint sets.  For q < 0 ideal 

slip occurs with Eq. (6.42) applying and 9uS/9n (> 0j not 

explicitly determined by the stress conditions. 

With the introduction of the continuous slip field 

u5(x,t), the in-plane strain (and rotation) discontinuities 

Ire also replaced by continuous strain (rotation)fields 

eS(x,t), a)S(x,t)  determining the net relative strain 
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(relative rotation) due to joint slip.  In particular, by 

analogy with Eq. (6.44), 

9-S   1-     In      M\ (6.48) 

Reca] Hing that  V   is the in-plane gradient perpendicular to n 
n, we have 

?SW =liVn^S^)+ tV^)]T (6.49) 

within an additive symmetric tensor function of the in-plane 

coordinates.  The latter is set to zero since it is only the 

change of es  along the normal which measures the joint slip 

contribution to block strain.  In fact, it is only the normal 

derivative  8uS/9n which enters the constitutive equations 

so that  uS (us)  is determined only within an additive in- 

plane vector function of the in-plane coordinates.  Thus, 

the continuum decomposition 

u(x) = uC(x) + uS(x) fft.SO) 

allows transfer of such vector functions between u  .^nr! 
s u . 

The block strain    JW given by 

eb(x) = eC(x) ♦ eS(x) (6.51) 

uniquely (unaffected by any such transfer).  It must be 

emphasized that Eq. (6.51) is not a strain decomposition 

associated with the total displacement decomposition Eq. 

(6.50) since  es  is given by the in-plane gradient only of 
c u . 
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When there are several parallel joint sets with 

' Hi 
(6.50) becomes 

normals n^k = 1, K), the displacement decomposition Eq 

K 

u(x) ■ uc(x) ♦ ^u^(x) 
k=l 

(6.52) 

and the block strain Eq. (6.51) becomes 
K 

eb(x) - ec(x) ♦ X)^(x) 
k-1 

(6.53) 

where 

Tl 
!vC*) - ||vnk^(x) + ^nA^]  I (6,54) 

Note that the in-plane gradient operator Vnk changes with 

n . Also joint slip may be governed by different criteria 

for the different sets, so in general the joint functions in 

Eq. (6.45) and (6.47) become  g^a)  and  fk(T,o), Fk(q)  for 

the  n,  set.  For simplicity common joint functions are 

adopted in the illustration. 

Boundary conditions will be the usual conditions of 

traction, total displacement (velocity), or appropriate 

combinations.  We have noted that the permitted transfer 

between uc and uS  does not affect  9us/3n nor e , which 

are the quantities governed by constitutive laws. 

Joint dilation (contraction) described by normal 

velocity discontinuities across joints may be treated simi- 

larly by introducing a continuous dilation displacement field 

ud(x,t) associated with the joint set of orientation n, 

where now ud  is parallel to n.  The normal strain dis- 

continuities across the join's contribute to the block 

249 

            



Wmm.  , i <»... I.WIII  , .1 i i.min..i n.i m ■l"1 "^"^ "■^^^^^"i«^"!"^» ■•^•^^^■HPH 

deformation as do the  E.  in Eq. (6.25), and here become a 

continuous strain field e (x) 

ed(x) = 7|vnud(x) + [Vnud(x)]T| (6.55) 

which adds to Eq. (6.51).  Several joint sets are treated as 

in the slip case already described.  This dilation (contrac- 

tion) may be a separate property of joint filling material, 

requiring an independent description, or may be linked 

directly to slip (dilation accompanying slip at constant 

normal traction) as described in Ref. [ 79 ] when u  is related 
s 

to u . 

In dynamic situations the particle acceleration is 

the second derivative of the total displacement u(x,t), so 

that momentum balance requires 

p u =-div a + pb 

where  p  is the initial intact material density and b 

is the body force per unit mass (and here gravity effects 

over extended vertical sections may be relevant). 

Within the spirit of the length scale assumptions 

already made each joint set may have a gradually varying 

orientation 

(6.56) 

n n(x) (6.57) 

where changes of n over a few block dimensions are small, 

but not necessarily over the gross scale.  This variation 

includes non-parallellism and curvature.  Similarly non- 

uniform spacing 

d = d(x) (6.58) 
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is permitted with the same restriction on gradients. 

Finally, we mention a recently received manuscriptL  J 

which describes an alternative continuum characterization of 

jointed rock mass.  It is again assumed that there is a re- 

presentative region of several block dimensions in which 

overall stress gradients are small and in which the two 

orthogonal joint sets considered are separately parallel. 

Staggered joints are allowed and a mean frequency is intro- 

duced which reduces to the separation reciprocal for 

continuous joints.  Joints are considered as discontinuity 

surfaces, but now the discontinuities in tangential and 

normal displacement are linearly related to the shear and 

normal tractions respectively, defining two stiffness co- 

efficients.  Thus, the concepts of cohesion and irreversible 

slip (and dilation) are not incorporated.  The joints and in- 

tact rock blocks are considered as two elastic phases of an 

overall elastic composite and, following Hill's theory, 

stress concentration factors for the rock and joint are 

introduced, first for the rock and one joint set and then 

regarding this as the matrix phase combined with the second 

joint set.  These concentration factors (ratio of mean joint 

stress to overall stress) are estimated for different stag- 

gered joint geometries in representative rectangular blocks 

subjected to simple boundary loading," both by analytic 

approximation and finite element calculations which are in 

good agreement.  The theory does not incorporate the effects 

of non-uniform displacement discontinuities across the joints 

on the block deformation. 
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6.6  BI-AXIAL LOADING 

A simple illustration is obtained from uniform bi- 

axial loading, plane strain or plane stress, of a rectangular 

mass containing two joint sets symmetric about the principal 

stress axes, as shown in Fig. 6.7.  Uni-axial displacement, 

u E 0, is a particular case.  From the uniformity of loading 

and symmetry of the joint sets the total displacement field 

with respect to the axes  0X xa   shown in Fig. 6.7 has the 

simple form 

u = fu (x ,t), u O ,t) , u (x ,t)| , 
—     L  1   1 ü   2 3   3    J 

(6.59) 

where  u  = 0 in plane strain.  If there is only a single 
3 

joint set with orientation n not parallel to one of the 

principal axes, then once slip occurs the displacement will 

not have the simple form of Eq. (6.59) and solution is non- 

trivial.  The two joint sets, not necessarily orthogonal, 

have orientations 

n  = (cos0, sinG, 0) , n = (cosG, -sine, 0) , 0 < 0 < TT/2. 
—1     v      ' —2 

(6.60) 

For both plane strain and plane stress there are no components 

of shear traction on the joint planes in the x -direction so 

all slip must take place in the Ox x  plane.  No shear 

traction and hence no slip can occur for 6 = 0 or TT/2  since 

0Y v  are principal stress axes.  Depending on the slip 

criterion and relative values of ^   ,o   ,   there can be ranges 

of  e  for which no slip arises.  In particular, Isotropie 

loading  a 

all planes, 

has zero shear traction (hence no slip) on 
1      2 
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For convenience, consider a loading cycle with 

0 > O   §   then at all stages the shear tractions on the 
1—2 

respective joint planes are 

CD 
TV 
— 1 

v = (-sine, cose) , 

(2) 
T T g v = (-sine, -cose) , 

—2 

(6.61) 

= -y (a  - o ) sin2e, > 0 , 
^12 — 

and the normal stresses are 

o ■ 
(1) 
a 

(2) 
= a = a cos2e + a sin2i (6.62) 

These tractions and the directions of the consequent slip 
Cl)  C^) 

velocity fields (when slip is initiated)  ^   ^  are 

shown in Fig. 6.7.  Because of the assumed symmetry about the 

Qx  axis we could seek a solution with  ^    = u = us 

but also, by symmetry about the Ox  axis, we could try 

u = ' u = us .   ^n fact both these approaches lead to 

the same total velocity fields (and block deformation), the 

difference of the two slip fields corresponding to permitted 
(1)      (2)     f b t- 

arbitrary fields in  ^  and  •  with respective zero 

normal gradients.  Starting with_unrelated fields  u ,  u 

illustrates how the total velocity field is independent of 

any such symmetry choice. 
CD  C?) 

When slip occurs the velocity fields  u ,  u 

contribute t-he in-plane strain rates, by Eq. (6.54), 
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e s  s 
9 

i 

CD 
ü     Cx^x^  t)   =   [- 

3 w 
1 

CD 
sine xr- + cosü   33^ )    U   ' 

(?) C2) 

's s       as 
2     2 2 

u     Cx^  x2,   t)   -   [■ 
3 

i 

C2) 
sine T^-       cose ijj- 

4 

respectively,  with Cartesian  components 

e       =   sin' 
11 

C2) 
e       ■  sin 

11 

l-sin( 
CD 

3x 
+    COSI 9x 4 

/ 3 .9 ^sine ^_ -   cos 
C2) 

3x )    U   ' 

(6.63) 

CD 
e       =   cos 

22 

CD 
(-sine £~*  cose  ^      u 
\ I 2   ' 

C2) 
e =   cos 

2 2 (-sin6 IT" 
COS1 

3x 

(?) 

(6.64) 

CD 
e ■-sine cos 

1 2 

\ tD 
(-sine ^-+  cose ^-j    Ö   , 
V 1 2 

(2) 
e sine  cose 

1 2 
(-sin( 

(2) 

3x 
-    CO si 3x    / 

The  block  strain  components   in Eq.   (6.53)   are 

e1?.   =  ec.   +    e-,   +     e- •   ,   (i,   J   =   D   2) eij i; ij lJ 
(6.65) 
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where 

ij 7\^ 

9u^ 

9X, 
Ci, j = 1. 2) (6.66) 

and 

e   = e 
13      2 3 

b    c e  = e 
3 3      3 3 3 3 

(6.67) 

The latter is determined by the intact material properties 

and plane strain or plane stress condition. 

We will consider the case of Isotropie elastic blocks 

with the constitutive law of Eq. (6.27).  Since  a 2 = 0, then 

b    c    C1)    (2) e  =e+e  +e  =0 
12       12 12 12 

(6.68) 

For both plane conditions the principal relations take 

the form 

(1)    (2) 

i i 
e   +  e  +  e 
ii      ii     ii 

= - Ao  + Bo 
i 

(6.69) 

(1)    (2) 
ec  +  e  +  e  = Ba  - Ao  , 

2 2 2 2 2 2 2 2 
(6.70) 

where 

plane strain:  A ■ 
K*J_G 

4G(K + i G) 
> 0 ,  B = 

4G (K*4G) 
> o , 

plane stress:  A = 3GK > 0 , B = 
K - ?G 

5GK > 0 

(6.71) 

(6.72) 
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The  block relations   are  completed by 

plane strain:     e^   =  0,   2(K ♦ $ G )a 3  =   (K  - -j G)   Ca I  ♦  oj 

Co.731 

plane stress:     e^   =  0,  6GKe33  = ( K -  -JG) (a i  + a ^ (6.741 

The decomposition of Eq. (6.52) for the form of dis 

placement given in Eq. (6.59) yields 

a) 
u Cx^t) 

u (x ,t) 
2   2 

= u (x ,x ,t) - sine u (x ,x ,t) 
112 12 

^3 
u (x ,x ,t) + cose ü (x^x^t) 

(2) 
- sine u (x .x ,t) , 

(6.75) 

(2) 
cose ü (x ,x ,t) . 

1   2 

(6.76) 

D ifferentiating u , u  with respect to x . x^ respectively: 

3uv 

sinf 

(1) C2) 
a ft  „.„ft a u . o 
^T- '  sinö ^T-  0 ' (6.77) 

du 

Ix 

CD (?) 
3 u i ♦ cose i" - cose z-£- ■ o . (6.78) 

9x 9x 

The snear and normal tractions T,o     are the same on 

both joint planes at each point  x» Eqs. (6.61) and (6.62), and to 

complete the symmetry it is assumed that both joint sets 

have common spacing d, common cohesion function  f(T,a), 

and common hardening function F(q).  Then the slip history, 

and hence  q, is identical for both joint sets, and since 
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v = v = 0   (reverse slip can be treated separately 
—i  —2  — 
following the necessary elastic unloading and reverse 

loading) the slip criterion in Eq. (6.47) gives 

CD 
)n   \ cosO 3x 

(1) 
+ sinO 9x ) U = 

(6.79) 

(2) 

h-i cose W- '  sine äT 
C?] 

I u = A (6.80) 

For slip-hardening 

5 f 

if'00 
>  o , 

(1) 
d 3_a 
7  3n tl = X "T^r (6.81) 

and for ideal-slip  X  is not related to stress conditions 

but Eq. (6.81) is replaced by 

f = 0 ,  A >_ 0 (6.82) 

In the latter case  d  does not enter explicitly and need 

not be common to both joint sets. 

Equations (6.68), (6.69), (6.70), (6.77), (6.78), 

(6.79),   (6.80)>   and   (6.81)   formally  provide  ei^ht  relations 
*C      'C      ^. >.^J for  tbe  two  derivatives   of each of    u 

1     2 
in 

terms of stress rates.  For ideal slip,Eq. (6.81) is replaced by 

an identity in the stress rates together with a required 

inequality on velocity gradients, and the velocity gradients 

are not fully detennined by stress conditions.  During purely 

elastic deformation of the blocks with no joint slip. 

u = u = o   the total velocity field is continuous and 

governed by the elastic laws 
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From Eqs. (6.77), (6.78), (6.79), (6.80) we find 

au 9u 
(2) 

■ ü 

2 1 V    2 2 

1 2  _ = - COSÖ 
a u \ 
5x7/ (6.83) 

which imply Eqs. (6.77) and (6.78), and make (6.79) and (6.80) 

equivalent.  But also the relations in Eq. (6.83) imply that 

Eq. (6.68) is satisfied identically, so in fact there are only 

seven independent relations.  However, we require relations 

only for the total velocity gradients 

3u 

dX 

9u 

3x 
2  _ 

3u 

3u 

I   (1) 

x  1 

+ COSOl3^— 

(?) 
3 u 
3x 

(?) 
3 u 
9x 

(6.84) 

together with the relative slips measured by the normal 

gradients, Eqs. (6.79) and (6.80).  Eliminating Su^/^x^ 

3uC/9x by the elastic laws, Eqs. (6.69) and (6.70), and in- 

plane strain rates, Eq. (6.64), we find, using Eqs. (6.79) and 

(6.80), that 

e  • - Ao  + Ba  - sinZeX , 
1 1        2 

Bo  - Ao  + sin2 6A 
1        2 

(6.85) 

(6.86) 

Finally, for slip-hardening  A  is related to the stress rates 

and loading history by Eq. (6.81), and for ideal-slip  A  is 

not so determined but the identity, Eq. (6.82), relating o^ 

o  holds.  In the latter case the lateral loading is fixed 
2 

by the axial loading and slip criterion, and the slip is un- 

restricted unless boundary constraints are supplied, as, for 

and 
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example, in uni-axial motion.  Recall that A E 0 when the 

stress conditions do not satisfy the slip criterion, and 

the deformation is purely elastic. 

For illustration consider a hardening law, Eq. (6.36), 

with the simple linear cohesion function, Eq. f6.38): 

f(T.a) = x-ya = F(q), F(0) = T (6.87) 

During loading with a  > a , by Eqs. (6.61) and (6.62), 

f = ao^ - ßa2, a = cos2e(tane-y), ß = sin2e(cote+y) , > 0. 

(6.88) 

By Eq. (6.31) 

A = T 4 = T   , = h(q)f  say, 
d    d F'(q) 

(6.89) 

where  h(q) > 0, approaches zero with full interlock, and 

increases indefinitely as ideal-slip is approached. 

Consider Isotropie loading to pressure  p  followed by 

further axial loading at constant lateral stress (confining 

pressure).  During the axial loading  f  increases or de- 

creases from  (a-ß)p = -yp  as  a > 0.  Hence for the cohesive 

stress  T   to be reached and slip to occur we require 

a  >   Q  Z  tane > y . (6.90) 

Then the loading  a  ^0  has three distinct stages 

I 0:o=a<p,-e=-e=   (A-B)ö 
—        1 2    — 12 1 

II       a     sp -e     =Ao,     e     =Bö, 
2 ^ 1 1*2 i ' 

t   ■   OO      >ü,-yp<f<T       , 
1 — —        Q 
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II       a     S p.     £>T,     £=aä     >0,     X -  h.Cq)   £, 

-   e     =   [A ^   ahCq)sin2e] , (6.93) 

e     =   [B  +  oth.Cq)sm20] 
2 

Since 

A-B<A<A+  akCq)sin2i (6.94) 

the  a l-t )  slopes for stages I, II, III, paths OP, PS, SL, 

in Fig! 6.8, decrease in sequence.  If F'(q)  is increasing as 

shown in Fig. 6.6, then h(q)  is decreasing with  q  (and 

hence with  -e ) and the slope of SL increases with (-e^ as 

illustrated In'pig. 6.8.  As  h - 0  (full interlock) the 

slope of SL approaches that of PS, the elastic stage II 

slope, from below, and hence elastic unloading LI) (slope 1/A) 

always has steeper slope than slip SL.  As  h - °°  (ideal-slip) , 

the slope of SL approaches zero from above. 

Slip commences at  S where 

0=0* (p) 
T  + 3p 

a  (6.95) 

Thus, if (P) is determined for a sequence of values p, 

and if a linear cohesion function f, Rq. (6.87) is appropriate 

to the gross response, then Wa, ß/ot can be estimated, 

and hence  y and T^  Furthermore, the slope of SL 

determines  h(q) . and consequently 

hrT-*f{%r)-H£)-^- rar 
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A consistent slope should be obtained for varying p  if the 
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Fig. 6.8--Axial stress - strain path for bi-axial loading 
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adopted model is appropriate. Clearly, less restrictive 
functions £,F can be considered when data inconsistent 

with  this  model   is  obtained. 

These  results  apply to both plane  strain and plane 

stress  by  appropriate  choice  of the   constants    A    and    B  in  Eqs 
(6.71)   and     (6.72).     The   initial  slip   stress     o*   (p)     depends 

on the   joint  orientation     6,   through  a,   ß,   but  is  always 
attained if    o     is   increased sufficiently  when  the  inequality 

in  Eq.    (6.90)   holds. 

Final1y,   we  describe  uni-axial  displacement,  u     =  0, 

for  the same  model.     Setting    e2  =-  0     in Eq.   (6.86),   together 

with the  plane  strain restriction    e3   =   0,   selecting    A    and 

B     in Eq.   (6.71),   gives  for  elastic  changes 

i 
-(K   ♦   J G)^, 

K 

 5—     i   ' 
K  +   ^G      1 

=  r o 

(6.97) 

f  =  o   (a   -   rß)   . 

For slip to occur with increase of aj  we requi re 

a - rß > 0 , (6.98) 

or equivalently , 

tane(l-r) > y  ^ (6.99) 

1 + rtan2e 

which is a stronger requirement than the constant lateral 

stress condition in Eq. (6.90).  Slip is initiated when 

a - rß 
(6.100) 

2b3 
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For continued increase of a      slip occurs with 

sinZel = -Ba  ♦ Aa - h(q] sin2e[aa  - Bo ].      C6-101) 
12 1 ^ 

provided that     X  >   Q.     From Fa.   f6.1011 

a
2       B  +  ahCq)sin2e       a      A f a  -   rg        K  O 0  <  .        A g  ßhCq)sin2ö " ß " ¥ LA ♦  JKTqJitHIFJ    3  ' 

(6.102) 

and 

hCq)£  =   X   =   AhCqJQ^ ;   ^CqJsinioJ   "   0 (6.103) 

Setting 

A f a -  rg    1       0 
ä [A ?  3h(qjsin2(3j 

we have 

0 a. 
r1- - f Cl-s)  , 
0 

1 

and 

US (a  -   rß)   =   -Bh(q)sin2e(a  -   rß)   <   0   . 

Then,  by   Eqs.   (6.85),   (6.86)   and   (6.105) 

-^   =   (A-B)(oi   ♦  02)   ■ ^(A-B)^  ♦  |  (1-s)]   . 

or 

[l  ♦  f  (1-s)]^     -   -2(K ♦ \ G); 
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Since 2(K + 4 G) = (K + ^ G) (1 + r) , the ratio of the slip 
path SL  slope to that of the elastic slope, paths OS  and 

LD, shown in Fig. 6.9, is (1+r)/ i ♦! (i-s) But 

C1T) - [l*| Cl-S)] -| [« - (a-rß)], < 0 (6.109) 

by Eq. (6.106), so that the SL slope for all  q  is less than 

the elastic slope.  For F (q) increasing with slip, Eqs. (6.89), 

(6.104), and (6.108) show that the slope of SL is also in- 

creasing. 

Now, by Eqs. (6.88) and (6.98), 

r < y- 1 - f < I . (6.110) 

so the ratio  o /o  may be greater or smaller during slip, 
2   1 

Eq. (6.105), than during elastic deformation, Eq. (6.97), 

depending on the magnitude of  s.  For  s = 0, corresponding 

to ideal slip, Eq. (6.105) yields a greater ratio than Eq. 

(6.97), and hence after a complete load-unload cycle of o^ 

OSLO  in Fig. 6.9,  o   is still positive i>a     = 0) at  D, 

and the direction of the shear stress is opposite to that 

during the slip loading SL.  Reverse slip may possibly occur 

before complete reduction of o  to zero.  The ideal-slip 

solution is obtained by setting  s = 0 in Eqs. (6.105) and 

(6.108) and evaluating  A by the first relation of Eq. (6.101). 
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Fig. 6.9--Axial stress - strain path for uniaxial displacement 
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VII.  FLUID-ROCK INTERACTION NEAR AN INJECTION WELL 

7.1 INTRODUCTION 

7.1.1 Hydraulically Induced Tensile Cracks 

The process of irjecting fluid under pressure into the 

ground alters the tectonic state of stress in the solid 

material from aA      (tension positive) to some new state 

s  = t1) + ^  ihere b.]     is the stress change in the 

rick duetto the injection process.  In the near vicinity 

of an injection site, rock stresses can he sufficiently 

altered to cause tensile cracks.  For the past 25 years, oil 

companies have been inducing tensile cracks by pumping into 

oil bearing rock for the purpose of increasing the effective 

radius of a well.  It is not uncommon for these hydraulically 

induced tensile cracks to arise from pumping pressures 

significantly less than pressures due to overburden.  Hubbert 

and Willis[81] attribute this phenomena to the presence of 

tectonic stresses in horizontal plane which are less compres- 

sive than the vertical component of stress due to overburden 

pressures.  \s they point out, this appears to be the case 

in the Gulf Coast area, which is a tectonically relaxed 

region as evidenced by a history of normal faulting. 

The conventional thinking on the subject of hydrofracture 

is that:  (1) the plane of the tensile cracks is oriented 

normal to the most tensile (least compressive) principal 

stress,  o],   and (2) an overpressure p (pressure in 

excess of the resident pressure,  p ) equal in magnitude 

to  a , is required to hold open and extend the cracks. 

This conceptual model for explaining the behavior of 

hydraulically induced cracks does not account for (1) the 

combined geometry of the injection cavity and the crack that 

is produced, i.e., the influence of a^  for non-penetrating 

fluids on the tectonic field a A ,   (2) changes in the rock 
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stress due to penetration of the injection fluid, and (3) 

gradients in fluid pressure along the crack — the mechanism 

by which the crack is eventually arrested.  Experience and 

emperical equations must be heavily relied on to regulate 

the hydrofracture process since no test-bed computer code 

is presently available for simulating the development and 

growth of hydraulically induced cracks.  The 2D FRI code, 

which is used for producing the results of Section 7.4, 

serves to analyze the state of stress, including the effects 

of fluid penetration, for an axisymmetric injection system. 

It appears likely, however, that modeling In 3D geometry 

will be required to achieve a detailed computer simulation 

of the hydrofracture process. 

7.1.2 Hydraulically Triggered Shear Failure 

Fluid injection in the presence of large tectonic 

stresses a.   with markedly different principal stresses 
(0)    (0)^ 
a  >>  a , as in an earthquake prone area, can lead to 

shear failure in addition to the hydraulically induced ten- 

sile cracks that emanate from the injection cavity.  Whereas, 

the tensile cracks tend to align normal to the least com- 

pressive principal stress   o , shear failures would be 

expected to occur on planes 30° to 40° from tne plane on 

which  a  acts.  As illustrated in the Mohr diagram of 
(0) (0) 

o are Fig. 7.1, shear stresses in the plane of  a  and 

the first to come in contact with the shear-failure envelope 

as the pressure in the pore fluid mounts, i.e., as tensile 
(1) 

stresses  a..  are induced into the rock matrix by the in- 

jection system. 

We cite two examples of what appears to be shear 

failures triggered by fluid injection.  The swarm of small 

earthquakes that occurred near Denver, Colorado during 

the period 1962 to 1967 were most likely triggered by the 
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Region of Shear Pailuro 
Plane on which Shear Failure Occurs 

Shear Stress 

Tensile Stress 

'lane on which ilydrofracture 
Cracks Develop 

Failure Region A 

UJjJl 1111   Shear Failure 

Shear Stress 

Tensile Stress 

(0)    (1) 
ö.  + o. 

Fig. 7.1--Tectonic state of stress prior to and 
during fluid injection. 
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pumping of waste fluids into a 3671-meter disposal well by 

the Rocky Mountain Arsenal.^82^  More recently, the controlled 

injection of water into the Rangley Field, Western Colorado 

has provided USGS researchers data on the potential for 

triggering small earthquakes by injecting fluid into the 

ground.^83'84^  In this experimental program, water was 

injected into the western portion of the Rangely Field, 

along a previously mapped fault.  As the water was driven 

into the faulted region, small earthquakes began to occur. 

When the pumping was stopped, the occurance of earthquakes 

persisted for a period, then as the fluid pressure diminished 

by diffusion, the earthquake activity also diminished. 

7.1.3  Consolidation Theory 

Various theoretical models have been developed for 

describing the mechanical interactions between the solid and 

fluid constituents of a saturated porous solid material 

such as soil or rock.  Much of this work has been motivated 

by structural engineers concerned with the gradual settle- 

ment of saturated soils.  A simple mechanism to explain this 
[85 1 

consolidation process was first proposed by Terzaghi.1 

The next major extension of the theory of consolidation was 

made by Biot^86^ in which the linear consolidation process 

was modeled in three spatial dimensions.  This formulation, 

which has extended and refined somewhat since Blot's initial 

work, [87] has been proven satisfactory for explaining a 

variety of experimental results .^uch as the consolidation 

of a solid sphere of saturated clay,^88, 89^ and the 

consolidation of a two storied aquifer. 

In Biot's formulation and in all subsequent formulations, 

we find at least one constitutive constant that serves to 

account lor mechanical interactions between the fluid and the 

rock.  Generally, we find two constants which are opera- 

tionally defined through explicit laboratory tests.1 
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Although it is intuitively obvious that the interaction 

terms must be related to the elastic modulii of the rock 

grains, we know o£ no formulation for the quasi-static be- 

havior of an elastic fluid-rock composite that explains 

the physical processes for the interactions.  Such a 

formulation is needed if we are to provide a mechanism for 

nonlinear adjustments in the rock grains such as occurs in 

liquifaction.  In Ref. [3 ] the groundwork for such a 

formulation was presented using the TINC framework.  In 

the following section,this formulation is extended somewhat 

so that the mechanical interactions in a fluid-rock compo- 

site are developed entirely in terms of the constitutive 

properties of the rock grains, the porous rock matrix, 

and the pore fluid; the need for hypothetical interaction 

coefficients has been eliminated. 
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7.2    OUA.STSTATIC THEORY OF FLUID-ROCK COMPOSITE 

7.2.1 Simplifying Assumptions 

In the subsequent formulation for the mechanical 

interactions between elastic rock and interspersed compressxble 

pore fluid, we consider only linear behavior.  As such, the 

formulation applies directly to soils or rocks where: 

(1) Strains in the solid material are small compared 

to unity. 

(2) Stresses in the constituents are linearly related 

to strains in an Isotropie manner. 

. (3)  Velocities are slowly varying so that inertial 

forces can be neglected. 

(4) Seepage through the rock is governed by Darcy's 

law. 

(5) The fluid acts as a single constituent, i.e., 

no fluid separation occurs. The pores are saturated. 

7.2.2  TINC Notation 

The TINC framework for composite materials is based 

on particle stresses and strains, averaged over many 

particles [l'2'3' 77]     Consequently, the TINC nomenclature 

must differ somewhat from that used in conventional consolx- 
[86, 87, 88] 

dation theory. 

Following the TINC notation, we distinguish the 

individual constituents by a superscripted  (a)  where, 

for this development, we will use a - 1 to denote the 

solid constituent and  a = 2  to denote the pore fluid. 

Furthermore, we distinguish average particle stress, 

strain, and density terms by a superscripted e  in addi- 

tion to the superscripted  C<0  v.hich is used to avoid 

confuision between average particle field variables and 
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and corresponding gross field variables for the composite 

A subscripted  0  is used to denote initial values.  We 

now define the following terms: 

(a) 
V volume of constituent  (a)  excluding the 

volume occupied by the complementary 

constituent with 

(1)   (2) 
V =  V  +  V (7.1) 

(a)   Co) 
n  = V /V (7.2) 

= vo lume fraction, which, from Eq. (7.1) gives 

(1)   (2) 
n +  n ■ 1. (7.3) 

(a) 
M ma ss of constituent  (a), hence 

(1)   (2) 
M =  M  +  M . 

(oOp   («) (a) 
p e =  M / V 

(7.4) 

(7.5) 

. 

= mass density of particles in constituent  (a), 

average over many particles. 

(a)   (a) 
p  =  M /V (7.6) 

■ gross (partial) density of constituent  (a). 

Combining Eqs. (7.5) and (7.2) with Eq. (7.6) 

gives 
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(a) 
P 

(a) Co). 
n (7.7) 

(a) 
u. displacement component of a point in constituent 

(a) from its initial position. From the theory 

of deformable materials, we have 

(a) 
Co)  9 ui 
e = 

3x. 
i 

(a) 
P  o 

p 

(7.8) 

gross (partial) volumetric strain of constituent 

(a). 

(a)     p e 

^   J e 
P 

volumetric strain of the particles in constituent 

(a)  averaged over many particles.  From Eqs. 

(7.8), (7.9), and (7.7) we relate volumetric 

particle strain to volumetric gross strain. 

(a) (a) 

h  ( 
n 

(a) 
1 +   G (7.10) 

(a) 
a. . gross (partial) stress, i.e., the force component 

in constituent  (a)  per unit area of composite. 

(a), 

13 

(a) 

ÜT ö 1 
U 

17.11) 

n 
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= particle stress in 

over many particles 

constituent  (a)  averaged 

7.2.3 Constitutive Equations 

We relate average particle stress to average particle 

strain using Uooke's law for a linearly elastic Isotropie 

material 

CoOe   (cOe /(a)e   /   Ca)e\  Ca)e 
( £i! - 1/36ij £ ) + K 'ij 

(a)ö  ^^  (7.12) 

where  (y e  is the shear modulus of the particle material 

and  Ve  is the bulk modulus of the particle material.  We 

assume that equivoluminal strains in the rock matrix give 

rise to no changes in the pore vc^ume.  With this assumptxon 

we decouple shearing modes in the rock matrix from the state 

of stress and strain in the pore fluid and write 

13   ij V Ij      13   ' 
(1) 
0. . - 6;, ö  = 2 y 

(7.13) 

where  (l) is the shear modulus of the porous rock matrix 
rsA     ty.   I/" (J) 6..  is the dilatational stress in the 

ana.  o   ±i * ii ii 
rock matrix. 

More generally we denov.e dilatational particle stress 

by 

(«), 
1/3 

C00e, 
öi36ij 

(7.14) 

and gross dilatational stress by 

(a)       (a) 
a  - 1/3 o^,. 

(7.15) 
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Isolating the dilatational component of Eq. (7.12), we 

get 

^e       ^e^e (7.1b) 

Relating effective particle stress to gross stress by Eq 

(7.11) and effective particle strain to gross strain by 

Eq. (7.10) gives 

(a)   (o)(o) (a) 
o  = n K   e 

(a)(a) 
= n  K 

(a) 

Si \ 
n 

L   0 

(a) 
1 +  e 

)- 
(7.17) 

The dilatational stress components 
(1)      (2) 
o  and  o  given by 

(1) 
this expression are differentiated with respect to   e 
(2) 
e  to determine linear stress-strain coefficients in the 

and 

expression 

11 12 

c 
i-    2 1 2 2-» 

ray 
e 

1(2)' 

(7.18) 

where 

i i 

(1) 
3   o 
TTT 
3   E 

0(e) 

1 2 

(1) 
9   a 

9  e 

(1)       (1) 

Ve  i^    +   0(e) 
9   e 
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I  1 

(2) 
8 a 

9 e 

(2). 
(2) 

d  n 
TIT 
3  e 

♦  0(e3   = 
(2), 

K 

CD 
3   n 

8   e 

0(e) 

2 2 

(2) 
3   a 
~m 
3   E 

+   0(e)   ■     K 
(1) 

n 

(1) 
3 n 

3   e 

using  the   fact  that 
(1) 

0(e) 

(2) 
n  = 1 -  n  from Eq. (7.3) .  Being 

consistent with our restriction to linear strain theory, we 

will neglect the higher order terms, 0(e) << 1. 

In order to obtain results that are independent of loading 

path, we apply Betti's reciprocal theorem to write 

C   - C 
12      2 1 

or 

(1)   (1) VJe 3 n K  "ITT 
3 e 

(2)   C2) 

+ k  "ITT 
3 e 

(2) 
K 

(1) 
e 3 n 
TTT 
3 e 

(7.19) 

Equation (7.18) is inverted to obtain strain-stress 

constitutive relations 

• 

•] 
= ~D 

i i 
D 

1 2 f 
"I') = D 

2 1 
D 

2 2_ 
b 

(7.20) 

where 
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1) 
1 1 

(1) 
1- n 

3 n 

3 e 

1 2 

D  = D 
12     2 1 

(2)e(l) 
K e n 

o 

(1) 
3 n 
"OT 
3 E 

(l)e(l) 
K e n 

o 
1  U) 9T+ 

3 e 

D 
2 2 "TTT 

3 n 

3 e 

D 
1 2 

At this point we still have the single interaction 
(1)  (1) (lie (2)e  (1) . (2) 

constant of the material  3 n /3 V = - Cre/  r#)lV/3V. 

However, we note that the bulk modulus of the porous rock 
(2) 

matrix (measured with a = 0) is simply the inverse of D 

in Eq. (7.20) 

I 

(1) 
K  = D 

(7.21) 
i i 
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which we then use to eliminate the remaining interaction 

constant to obtain 

CD n       /     cm 
C 

9 e 

C2>, 
K 
TTT 
K 

TTT 
n - 

0 

1 -  "o) 
(i) Cir 
K / K e 

(7.22) 

and 

(1) 
3 n 
T2T 
3 E 

= + 

(2), 
K 

TTT, 
K 

(1) 
a n 
TTT 
3 E 

CD' 

(■ ■ -.) 

-1 

, l1 - no)K 
)  (2) 
e/ K ' 

nr 
n 

UTTTT. 
K / K 

(7.23) 

im\ - ■ /(2) 
I n0l , bulk modulus of the pore fluid ^K 

)dulus of the rock grains ( K ej , bulk modulus of the rock 

itrix ( K 1 , and shear modulus of the rock matrix I U )• 

We now have the elastic constants for a fluid-rock 

composite expressed in terms of physical material properties: 

porosity I n i . bulk modulus of the pore fluid ( K  I, bulk 

moc 

mal 

The need for operatio.tally defined interaction constants has 

been eliminated.   Jf we were to substitute the terms 

W/SV     and 
respectively, into the stress-strain and the stress-strain 

equations, Eqs. (7.18) and (7.20), respectively, the re- 

sulting expressions would become rather complex.  We avoid 

this by introducing two terms from consolidation theory 

we 

3 n /3 e  from Eqs. (7.22) and (7.23), 

TPK) 
(1) 
K 
TTT, 
K (7.24) 
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CD 
n 

M = TTf. TTT 
1/ K e + (a - 1)/ K 

(7.25) 

where  a  is the constant a, a, and 1 + Q/R in References 

[91], [86], and [87], respectively; and M is the constant 

M, Q,  and  R  in References [91], [86], and [87], 

respectively. 

Thus, we have developed the "iutcractinn" constants 

of consolidation theory in terms of the physical constants 

of the constituents. This fact makes it possible to place 

bounds on the terms  a  and  M. First we note that when a 

porous rock is loaded, only a portion of the volumetric 
f 1") strain  e  is transmitted to the rock grains, i.e., 

|'■e-kj <_ | ^e | .  Ußing this inequality in Eq. (7.17), we find 
(1)(1)    (1) 

that  n  K e >  K , consequently 
o     — 

0 < 
(1) 
K 

" We " K e 

(1) 
n (7.26) 

Substituting these bounds into the expression above for a 

and M  gives 

1 
1  <  a  < 

(^) 

(7.27) 

(2) 

0   < 
*H - li 

n    K 
1  + F^FF 

(1)\   (2), /       (1M t2 
<_  M £   ll   -     n   )    K 

(7.28) 

For  sand  and  s 
CD    (.De ilt materials,    K   / K       ♦ 0, 
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TT) 
n 

—,   and M 

K     l1   '     n0) 
(2) 

n    K  C 

whereas   for 

1  + 

I7^ 
(i)  CD.     CD 

crys 
i      v/ve->     n a-*-l.   and M tallme  rock,   K  / K       ■»•    n     ,  « 

(l   -     nJK   e. 

To  complete  the development o'  the  stress-strairyela 

.ons   for  the   fluid  rock  composite,   we  replace   9  n  /3   e     and 
iW/^V   in Eq.   C7.20)   using  Eqs.   (7.22),   (7.23),   (7.24),   and 

(7.25)   to  obtain 

(7.29) 

Similarly, we obtain the stress-strain relations from Eq. (7.18) 

(D 
(a-l)2+ K /M (a-1) 

(7.30) 

+ v.0 rnrk mitrix when we include the shear The stress In the rocK matriA, 

components, becomes 

(i) CD CD    +   [CD CD 
a. .   =   2   y     e. .   +    1 K   -   2/3 

13 ij 
[T-   2/3^   *   Ca-D««)«^   '     ♦   (a-l)M6ij   e   . 

(2) 
e 

(7.31) 

or  alternately 
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(1) 
o 

)    (Dd)   /(I)    (1)\   (1) 
lj%- 2 ii  e^ + \ K - 2/3 M /«^ e  ♦ ( a - 

C2) 
1) 6. . a 

(7.32) 

7.2.4  Conservation of Momentum 

Conservation of momentum in the fluid-rock composite 

is expressed 

(a) (a) 
(a)/9 v.   (a) 8 v. 

where 
(a) 
v. = 
i 

9t 

(a) 
a ui 

V . 
J 9x. 

3 

(a) 
9 O^j    (a)    (a) 

9x. p f. + p ß. 
i   M  i 

(7.33) 

(a) 
ire— ,  f-  is the body force per unit of compo- 

site mass that results from gravitational forces,      is 

the body force per unit of composite mass that results from 

drag forces due to differential movement between constituents 

According to Darcy's law 

CD 
Pßi - 

(2) 1 '(2) 
v- 

(1) 
l< 

(7.34) 

where 

TTrure 
n 2 Y 

(7.35) 

Here k represents the permeability of the rock matrix to the 

pore fluid (units of velocity) and  Y 
e =  P eg is the weight 

density of the poie fluid.  The permeability is related to 

physical properties of the sol,id and fluid by 

(2) 
K Y e 

"nr 

in which 
(2) 

is the absolute viscosity of the fluid and K 

Is a physical coefficient of permeability  K = KD2,  D being 
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the effective diameter of the pores and tc  a quantity with- 

out dimensions depending only on the geometry of the pores. 

Conservation of momentum for the fluid-rock composite 

is expressed by combining Eq. (7.33) with a = 1 and a = 2 

thereby cancelling the interconstituent drag terms p Q^ 

CD 
d   a. . 
 LL 
3x. 

(1) 
(1) 9 v, 

9x. 
j 

(2) 
P 

(2) (2) 
9 v.   (2) 9 v. 

9t J   J 

(7.36) 

Incidently, we note that for the special case of waves propagating 

through a fluid-rock composite in which fluid seepage is negligible 

(k*- 0) then v. =  v. = Vi  and Eq. (7.36) reduces to 

9T. •  ii + 9x. 
J 

pf 
/ 9v.      9vi\ 

(7.37) 

CD      C2) whe -e  T..=  a..+6.a  is the gross composite stress. 
13     ij ij 

The constitutive equation for this special case is given by 

/(1)     (1)    2, \ T^ - Zut^   + ( K - 2/3 M  + a^/ ö^e (7.38) 

This expression is obtained by combining Eqs. (7.14) and (7.30) 
(1)    (2) 

with  Eij -  eij -  Eir 

For the purpose of investigating the state of stress 

near an injection well, we include seepage effects.  However, 

we will work on a time scale in which inertial forces may be 

neglected so that Eq. (7.36) reduces to 

(1) (2) 9 0 . 
 LL ♦ i_2- + Pf. = 0 
9x.     9xi   

P 1 
(7.39) 
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The constitutive equations for the rock matrix from 

Eq. (7.32) are introduced to give 

CD 
(1) a e, 

2 M Jx' 
1 (a: 

+   \  K 2/3 M ) 
CD 

3x. 
_ + 

(2) 
5 0 
5x1 of. = o (7.40) 

or in terms of the displacement field for the rock matrix 

CD a 
M 

(1) 

3x 

"i   /(I)     (1)\ 
T^ + I K + 1/3 y j 
j 

d2u. (2) 
9 o 

ax^x. + a ^ir ♦ pf. - 0   (7.41) 

The above three equations describe equilibrium in the fluid 

rock composite. 

Seepage equations for the fluid constituent are ob- 

tained by substituting   p^  from Eq. (7.34) into the 

momentum equation, Eq. (7.33), with  a = 2 

(2) 
9 a 
3x: 

(2) 
Pfi ■ 

1   ((2)   W\ ir \ vi -  vij (7.42) 

where we have again neglected inertial effects.  We take 

the divergence of the above expression to obtain a single 

scalar equation for describing fluid seepage 

(2) ,(2)    (2)    (1) 

irr; 9X 3X  
+P
 (Tr ^3r - ^T- 

Y 
e    1   3       Y        

1 9t (7.43) 

(2) M-)      Co) 
We substitute for   e  in terms of  c  and   o  from Eq 

(7.30) to obtain 

* 
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the conventional seepage equation that appears in consolida- 

tion theory. 

7.2.5 Finite Element Formulation 

The interacting set of equations that describe seepage 

of compressible fluid in an elastic rock matrix, Eqs. (7.41) 

and (7.44), are solved numerically using the finite element 

method.  The numerical scheme is developed from the following 

virtual work expression 

/ 

(1) 
E 

CD  CD       U) 
3 u.  86u.    (2)  96u.       (1) 

J- + a o -«:—- - pf^S u. 
ijkl 3xk  3x1 3xi 

/•/(I)       (2) \  (1) 
/ I 0.-n. + a on. I 6 u. ds 

/ 

(2) 
9 a (2) 

f ,   k*  £,2- n.6 a  ds = 0 
5x7 i 

(7.45) 
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(2) 
92 o 
9x.9xi 

k* 

(2) 

111 
ax. 

ID 
9 £ 
9t 

(2) 
9 o ♦ 1 C7.44J 

k* 
(2)   (2) 

9 o  96 a 
9x. 

i 
9x 

(2) 
i 9 a 

M  9t 

(2) 
6 a 

(1) (2) 
+ a 

9 e  6 a 
9t 

pk* 

(2) 

ili 
9x, 

dv 
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where n.  is the  ith component of the unit outward normal 

CD 

vector and 

Eikjl = (K  - 2/3 u)«^! +  M «i^U +  ^ 6il6kl 

(7.46) 

for isotropic material.  The volume V  is bounded by the 
 j ...«r—  c = Q ♦ S = S + S .  On S... displacem closed surface S - S u 

+ S = S + S .  On Su, displacements 

of^he rock matrix are specified (?^= data) and virtual dis- 

placements are constrained to zero (6 ^ = 0).  On So  s 

surface tractions acting on the fluid-rock composite are 

specified {%n.   *  SV^  -  data).  On Sp, dilatational 

stresses in the fluid are specified  (V= data) and virtual 

stresses in the fluid are constrained to zero  (6a ■ O). 
On S = S - S . volumetric flow rates per unit normal area 

are specified P  (k*  il)^ ^ - «».«).  The virtual work 

expression above is an equivalent to the description of the 

fluid-rock composite given by Eqs. (7.41) and (7.44) with 

the boundary conditions described above. 

Following conventional finite element procedures, 

the dependent variables  u| and  a are expressed with 

the region of each element by spatial interpolation functions 

u' 

(D ^(x.t) s <<Kx)>  j^CO] (7.47) 

and 

(2) 
(x.t)   s   <♦(;)>    [ir(t)j (7.48) 

where the symbols < >  and j | denote row and column matrices, 

respectively, of order N ■ total number of nodes^in the 
discrete system.  The terms  ju^t)}  and  [ir(t)j are 
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column listings of nodal displacements of the rock matrix 

and fluid stress, respectively. 

The spatial approximations expressed above are then 

substituted in the virtual work equation, Eq. (7.45) and the 

nodal values of displacement and fluid stress are factored 

out of the integral expressions to obtain 

- NJ (KJIKH + c. ff(t)' M) 

U«! -Ic/lüp1!- m\nt)\   - m\iw\ * M)   '0 

(7.49) 

where 

Ki.i 2LJ   J   Eij kl\3x, 3x. 
dv 

e     V^ 

^I-E /<%; <())>  dv 

e       V 

^ ■ S / - <%><%>- 
e       Ve 

[E] 
e       Ve 

1 T i.   <*><(})>   dv 

|Fi(t)l LA . (t)   <$>     dv 

e     V* 

+    L  <e\aijnj  + a    G "^ 
T ^>     ds 

S e o 
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;Q( «1 ■ E / 
e  V* 

(2) 
(2)9 f, 

9 x. 
<({)> dv + 

e   s^ 

(2) 

Since the nodal variations  61h   and  6TT 

Eq. (7.49) becomes 

MiV^I * lcil!'(t)l ■ iFi(t) 

lslT i";10! ■ m|"H ■ iEili(t)l' "iQ(t)t 

are arbitrary, 

(7.50) 

(7.51) 

The original FRI code was developed for performing 

the indicated calculaf as and stepping the solutions in 

time.^  In this code, fluid stress is advanced in time 

using Eq. (7.51).  The fluid stress at the advanced time is 

then introduced into Eq. (7.50) to update displacement, strain, 

and stress in the rock matrix.  The time rate of displacement 

in the rock matrix is then used in Eq. (7.51) to affect further 

changes in the fluid stress. 

In the present version of FRI (FRI2) an implicit time 

stepping scheme is developed for the combined set of 

equations by assuming linear variations in the dependent 

variables  [^(t)}  and  ^(t)}  over the time interval  At 

Equation (7.51) is then integrated from  t 

obtain 

At  to t  to 

Ic.pjiyt) - U.(t - At)} - ^ [H]JTT(t) * lT(t - At){-[E] 

• \vit)   -   TT(t - At)J = % |Q(t) * Q(t - At) (7.52) 

We now combine Eqs. (7.50) and (7.52) into a single matrix 

equation and collect terms involving the advanced time 

t  to obtain 
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n1 
K. . 

i 
i 

i 
j 

C. 
i 

c. T    i 
i 
i 

IE] -   ^   [H]_ 

IM1 

w(t)j 

C 

0 

-[E]^[H] 

h^:^i+ iri?.!  
Tr(t-At)  )  ( -^JQ(t)+Q(t-At)} 

(7.53) 

It is this equation that is solved to advance the 

interactive calculations in time, one solution of the 

equation per time step.  A 2D (plane strain or axisymmetric) 

finite element program, which was originally developed by 

Ghabousi and Wilson^91^ has been extensively modified at S3 

to form the FRI2 code. 
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7.3 NUMERICAL RESULTS 

7.3.1 Test Calculations 

In order to develop confidence in the computing pro- 

cedure, a number of test calculations have been performed: 

1. Simple compression of the rock matrix with 

a = 0  to remove the influence of fluid from 

the equilibrium equations, Eq. (7.41). 

2. One-dimensional diffusion with  a = 0  to remove 

the influence that the rate of dilation in rock 

has on the seepage equation, Eq. (7.44). 

3. One-dimensional consolidation under a uniform 
r 7 1 

load with  a = 0  and  a = 1. L J J 

\.     Injection of fluid at a constant overpressure in- 

to a spherically symmetric injection well with 

a = 1. 

The test calculations with  a = 0 are not intended to 

simulate a physical problem but rather to compare numeri- 

cal results with analytic soultions.  After some effort, suit- 

able accuracy has been achieved in all of the test calcula- 

tions with the exception of the time varying behavior at 

very early times.  For these cases, the numerical results 

match analytic soultions only after the fluid pressure 

has diffused sufficiently for the piecewise linear 

spatial approximation (linear variations within each 

element) used in FRI2 to represent the spatial variations 

with reasonable accuracy.  From this point on, until a steady 

condition was reached, the numerical results match the 

analytic results to within about 2 percent of the peak 

values for rock stress, rock displacement, and fluid 

pressure. 
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7 3.2 Spherically Symmetri^Injection Cavity 

As the result of the number of terms that influence 

the quasistatic behavior of a fluid-rock composite, the 

„chanisms that govern a numerical simulation "• "~
t^ 

difficult to isolate.  The existence of an analync  olutton 

to an injection well with fluid penetration I. useful for 

gaining these needed insights, even though many of the 

physical complexities are necessarily missing from the 

analytic treatment. Frazierl5' has obtained solution for 

the special case of injection into a spherical cavity « 
a homogeneous oorous material.  We present these solutrons 

Ire in order to form a basis for extracting .nformatron fro™ 

numerical calculations involving more complex inject ton 

systems. 

Ejection into a cavity of radius ro is accomplished 

by stepping the fluid „assure in the injection cavity rom 

the resident pressure 7 to an elevated pressure  P * P.. 

Illustrated in Fig. 7.2. The interactive equations govern- 

ing equilibrium in the composite. Eq. (7.40), and the seepage 

of fluid. Eq. (7.44). are satisfied simultaneously by the 

following expressions: The overpressure in the pore fluid. 

as a function of the distance r  from the center of the 

injection cavity and the dimensionless time x. is given by 

p(r,T) 

(2) 
o (r.T) (7.54) 

— P r  r o 
l-er£ 

r/r 

/T 
(7.55) 

The stresses in the rock matrix are altered by the presence 

of the injection system according to 
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x3' U3 

Cased Well 

Porous Rock 
Material 

CD 
x2. u2 

Fie  7.2--Spherically symmetric fluid injection 
system.  The overpressure p0  is intro- 
duced in the cavity at the initial time 
and then neld at this level. 
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(1) 
..) 

(2)     (ro^ 1-erf 
fr/r    - 1 . 

V     2/?       /J lj 
(7.56) 

In the above expressions, the dimensionless time lc 

given by 

T = 1 (7.57) 
T 

where 

T = o 
I* i ♦ 

M 
(7.58) 

For injection of water into competent rock with 10 percent 

porosity, wecet T - 5.1 * 102 sec  using the physical 

parameters  CKJe - HI kbars, V - 100 kbars (a = 1), 
(jt)e= 20 kbars (M - 2 kbars), k = lO'7 cm/sec, 
(?)e = 103 dynes/cm  (k* - 10"8 cmVdyne sec) and ro= 100 cm. 

At the other extreme, when we consider in injection into a 

sedimentary deposite with 40 percent P01^^' we Set 

T ■ 0.56 sec using physical parameters  K e= 100 kbars, 

T- 20 kbars (a - 2.0), lKJe= 20 kbars (M - 6.67 kbars). 

k = 10-3cm/sec, (Y)e = 103 dynes/cm3(k* - 6.25 x lO"6 cmVdyne-sec) , 

and r = 100 cm.  Pore pressure as a function of radius is 

presented in Fig. 7.3 at various values of dimensionless time. 

Pore pressures, obtained numerically using the FRI code, are 

also presented. 

We make the following observations pertaining to these 

results: 

1. The permeability (k) and the elastic constants 

rC|)e| ijpe^ and 4J3 influences only the time 

rate of seepage; these material properties do 
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not   influence  the  stresses   in  the  linearly 
elastic,   spherically  symmetric  iniection illy  symmetric   injectio: 

in   k, cre,  (KVlPe, well.  Increases 
(2) 

and 1/ n  increase the time rate of see- 
'  o 

page. 

The shear stress in the rock matrix is 

time invariant. 

The tensile stresses that are induced into 

the rock matrix by the injection system 

increase linearly with increasing' porosity, 
(2) n o • 

4. At late times, the fluid pressure and the 

tensile rock stress introduced by the in- 

jection system die out as the inverse of 

the distance from the injection cavity; 

whereas, the rock stresses induced by 

non-penetrating fluid (k = 0  or  T ^ 0) 

die out as the third power of the inverse 

of the distance from the injection cavity. 

5. At ten cavity radii, the pore pressure and 

the rock stress reach half of their steady- 

state (ultimate) values for T = 8 or 

lO1* sec for competent rock (T = 500 sec) 

and 10 sec for sedimentary material 

(T = 0.5 sec). 

In general, half the steady-state stress change is 

reached when 

(f-) 
i.e., when 
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t = (7.59) 

6. The principal stresses in the rock matrix 

generated by the fluid injection align 

radial and tangential to the injection 

cavity with the tangential stress (hoop 

stress) adjacent to the cavity being the 

most tensile.  Consequently, hydraulically 

induced cracks will align normal to the least 

compressive tectonic stress. 

7.3.3  Shallow Injection Well 

The FRI code is used to investigate the fluid pressure 

and rock stress produced by injecting water into a cylindrical 

well near the free surface.  Injection occurs at a mean depth 

of 20 meters over a vertical extent of 6 meters.  The in- 

jection well is illustrated in Fig. 7.4.  A set of three 

complete calculations are made to examine how the injection 

process is influenced by presence of the free surface and 

a nearby layer with contrasting permeability.  The material 

properties, typical of a shallow sedimentary deposit, are 

also prebonted in Fig. 7.4. 

We note that a rather large radius (1.0 m) is used 

for injection.  The analytic solutions of the previous 

section for injection into a spherical cavity indicate that 

the cavity radius strongly influences the rate at which 

fluid pressures spread into the surrounding media, Eq. 

(7.55).  For the cylindrical injection cavity of Fig. 7.4, 

the influence of cavity radius will be somewhat less than 

for the spherical cavity. 

The shallow injection system is modeled numerically 

with an axisymmetric grid consisting of 10 elements in the 
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Free Surface 

^ 

Fluid Injection at 
p . l bar overpressure 

'-—-mmmr 
Material  1 

11 m 

— yi i 
Uncased .Ml    Material 1 

Well Nj | I 

23 m J L  r » 1 m 

i 
Axis of Symmetry 

Material 1 

(1) (1) (2) 
K' . 10 kbars. \    ' Ul,    *,  '  0.4. a 

k - 1.85 *  10'* cm/sec 

1, M - " 
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radial dimension.  The finite element grid, which is pre- 

sented in Fig. 7.5, is bounded from below by impervious, 

rigid rock and bounded at large radius (61 m) by a highly 

pervious, smooth, rigid wall.  The upper surface is traction 

free with no resistance to fluid flow.  Injection takes place 

over a vertical extend of 6 meters in a 1-meter cylindrical 

well.  Injection is accomplished by stepping the pressure 

in the injection zone to 1.0 kbar and holding it at this 

level. 

Computed rock displacement, gross (partial) fluid stress, 

maximum gross rock stress, and gross rock deviatoric stress 

are presented in Figs. 7.6, 7.7, 7.8, and 7.9, respectively, 

for a homogeneous surface layer.  The spherically 

symmetric time constant,  T of Eq. (7.58), Losing the 

properties of the surface layer and a cavity radius of 

1.0 meter is 10'3 days.  Using Eq. (7.59), we would estimate 

that the pore pressure would reach half of its steady state 

value in 0.5 days at a distance of 20 meters.  In Fig. 7.7 

we see that this estimate is probably within a factor of 

two for points below the level of the injection; however, 

points near the free surface approach a steady-ctate  condi- 

tion somewhat more rapidly.  A steady-state condition is 

essentially reached throughout the grid in one day.  From 

the rock displacement plots of Figs. 7.6, we see that the 

presence of the free surface has negligible influence for 

t < 0.01 days.  At this point the rock mass overlying the 

injection zone heaves vertically, and the outer fluid 

stress contour begins to parallel the free surface indicating 

fluid escaping at the free surfaces. 

The fluid and rock stress contours near the injection 

zone, Figs. 7.7, 7.8, and 7.9, are vertically elongated 

due to the six to one, length to radius, geometry of the 

injection zon^.  At intermediate distances, however, the 

m*mä 
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contours become nearly circular, characteristic of a 

spherical injection well.  At greater distances, the free 

surface and the impervious, rigid base distort the contours. 

It is interesting to note, however, that the steady-state 

fluid stress and maximum rock stress fall off very nearly 

as the inverse of the distance from the injection well in 

the horizontal plane of injection, just as in the spherically 

symmetric injection system.  Finally, we note that deviatoric 

stresses below 0.05 bars do not remain invariant with time. 

The rigid base condition significantly influences the very 

low deviatoric stresses as the steady-state condition is 

reached  t > 0.1 days. 

Similar graphical form, although less detailed, is 

used for presenting the results of injection into an 

identical environment with the exception of a narrow 

zone (4 meters thick) of material just above the injection 

site with an order of magnitude higher permeability.  The 

computed displacements, fluid stress, maximum rock stress, 

and deviatoric stress for this layered region are presented 

in Figs. 7.10, 7.11, 7.12, and 7.13, respectively.  In 

Figs. 7.14 through 7.17, we present results for the same 

overlying layer with an order of magnitude lower permeabi- 

lity than the remaining material.  From these three sets 

of calculations - the homogeneous surface layer, the over- 

lying high permeability layer, and the overlying low 

permeability layer — we ^.ave made the following observations: 

1.  Stresses are generated in rock mass near the 

injection well, even before seepage begins. 

Because the vertical dimension of the injection 

cavity is greater than the horizontal dimension, 

the circumferential stress produced by the non- 

penetrating fluid pressure is the most tensile 

principal stress.  In a shear-free tectonic 
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condition, hydraulically induced cracks would be 

initiated in the vertical plane.  In the more 

common state of unequal tectonic principal 

stresses, the hydraulically induced cracks 

would likely orient normal to the least com- 

presslve principal stress quite near to the 

well. 

2.  After the seepage progresses for some time, 

t > 0.01 days, the maximum principal rock 

stress is essentially vertical everywhere 

except very rear the zone of injection.  The 

vertical orientation is attributed to the 

presence of the free surface.  The overlying 

low permeability layer gives rise to nearly 

twice the tensile stress produced with the 

overlying high permeability layer.  In general, 

the presence of a highly permeable zone tends 

to reduce the fluid pressure and rock stress in 

the region between the point of injection and 

the permeable zone.  Conversely, the presence 

of a nearly impervious zone tends to cause 

fluid pressures to mount thereby increasing the 

tensile stress introduced into the rock.  The 

increase in vertical stress is accompanied by 

an increase in the vertical displacements in 

the rock as compared to the case with higher 

overlying permeability. 

3. Deviatoric stresses vary only slightly as seepage 

progresses. 

4. At early times, before the presence of non- 

homogeneous structure influences the seepage, 

seepage rates can be estimated from the 

spherically symmetric injection well results 
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of Section 7.3.2.  This would probably not be 

the case for a more elongated injection cavity. 

The presence of the free surface shortens the 

time it takes to reach steady-state conditions 

at large distances from the injection site. 
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7.4 SUMMARY AND CONCLUSIONS 

Volumetric changes in the pores of fluid saturated 

rock give rise to mechanical interactions between the pore 

fluid and rock material.  Starting with the stress-strain 

behavior of the particles, using the TINC framework, the 

mechanism for these interactions has been formulated.  The 

result is a linear theory for describing the state of stress 

and strain in both the rock and the fluid constituent.  The 

resulting equations have been reduced to the form that 

appears in consolidation theory.  In so doing, the inter- 

action constants of consolidation theory become defined in 

terms of material parameters thereby eliminating the need 

for hypothetical interaction constants. 

Assuming Darcian flow through the pores, the equations 

that govern the seepage of fluid through an elastic material 

are presented both in differential form and in integral 

form.  The integral form, which appears as a virtual work 

equation, is used to develop a finite element scheme for 

treating interactive seepage.  The 2D FRI2 code is based 

on this development.  The ZD finite element code is designed 

to model irregular geometry and material heterogeneities 

using an implicit time stepping algorithm. 

After testing the code on numerious problems for 

which exact solutions could be obtained, FRI2 was used to 

simulate the injection of water into a shallow sedimentary 

deposit.  The permeability of an overlying layer was varied 

to determine its influence on the injection system.  Based 

on these conditions, the following conclusions can be drawn: 

1.  The deviatoric stress produced by an injection 

well tend to be very localized and nearly time 

invariant.  Consequently, we conclude that 

alterations in the deviatoric stress in the 

vicinity of an injection well will have no 
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significant effect on tlie triggering of shear 

failures.  It will be the tensile alterations 

in the rock stress produced by fluid injection 

that pose the greatest threat for triggering 

an earthquake. 

The shape of an injection cavity can strongly 

influence the state of stress in the rock 

adjacent to the injection site.  It appears 

that cracks at the boundary of the cavity 

can be initiated with an injection over pressure 

less than the minimum compressive tectonic 

stress.  It is unlikely, however, that these 

cracks could be extended beyond a couple of 

cavity dimensions with a fluid overpressure 

less than the minimum compressive tectonic 

stress. 

The presence of a highly permeable zone near 

an injection site tends to reduce the fluid 

pressure and the induced tensile rock stress 

in the direction of permeable zone.  An 

impermeable zone near an injection site has 

the opposite effect and therefore would be 

more condusive to triggering an earthquake. 
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VIII.  DISCUSSION 

The work completed during the course of this contract 

provides the basis for more realistic ground motion pre- 

dictions in the nonlinear region near a buried nuclear 

explosion.  Such techniques are required to evaluate the 

effects of the siting medium on the signal transmitteu into 

the more distant elastic region.  This primary purpose 

of the program has been realized and in a companion program 

Cherry, et al.t 4 ] merged the shock code techniques with 

seismic code techniques to calculate the effect of the 

siting medium on the signal radiated to teleseismic dis- 

tances.  The techniques are also being used to generate 

equivalent source functions in a systematic study of the 

effect of siting conditions on strong seismic motions that 

form a potential hazard to surface structures located^ 

approximately a hundred kilometers from the source. 

The applications of the improved ground motion pre- 

dictive techniques, however, are much broader than the cal- 

culation of equivalent seismic source functions.  For 

example, one possible method for designing a defense system 

to survive a massive nuclear test is to employ structures 

in cavities buried deeply enough to withstand a direct hit 

from a credible threat.  A predictive understanding of the 

energy coupling processes, stress wave propagation effects, 

and the failure modes of the geologic media in the vicinity 

of the cavity are all required in order to develop a design 

methodology for hardened underground structures subjected to 

nuclear-weapon-induced ground shock.  Some implications 

of the results of the present study to the evaluation of 

sites for a hardened structure may be indicated. 

A series of parameter calculation using TAMEOS sub- 

routine have indicated air-filled porosity (void volume) 

to be an important property governing stress attenuation 
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in spherical configurations,f  ^ in agreement with earlier 

conclusions by BjorlJ ! ] and Cherry and Peterson.[881  The 

nitromethane tests described in Section 2.2 confirmed this 

and reinforced our confidence in TAMEOS for generating 

equations of state in partially saturated geologic materials. 

This suggests the possibility of an optimum attenuating sur- 

face layer overlaying a stronger deep layer for the actual 

underground structure.  For example, an alluvium layer with 

large void volume overlaying a competent hard rock formation 

may be superior to a site in which the hard rock extends to 

the surface.  Such a layer will attenuate the pulse from a 

surface burst and increase its rise time.  The vaporization 

of pore water in the near surface material after shock pro- 

cessing, however, will increase the momentum contained in 

the material thrown backward during the cratering process.f94^ 

A corresponding increase in the momentum initially carried 

downward towards the buried structure may be expected.  The 

TAMEOS subroutine could be a useful tool in assessing these 

counteracting effects if used for different rock-water-void 

mixes in detailed calculations.  Although such an investiga- 

tion is outside the scope of this program, the planar ID 

SKIPPER calculations in Section 2.3 indicate that explicit 

treatment of pore water vaporization must be included when 

calculating the ground shock transmitted from a surface 

burst to a buried structure. 

An optimum site may be selected to include geologic 

layers with large mismatch in their stress wave propagation 

characteristics.  If granitic layers are involved at stress 

levels above 70 kbars a two-phase equation of state (Section 

III) should be employed since the associated energy absorp- 

tion reduces the energy available to propagate the pulse to 

greater depths.  TAMEOS ^ould be used to generate equations 

of state for any weaker sedimentary layers.  Different 

plasticity models (Section IV) may well be required to 
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adequately calculate the transmission of the pulse through 

the various layers between the surface and the buried 

structure. 

Ground motion data from underground nuclear explosions 

and high explosive simulation tests (e.g., Project STARMET, 

Ref. [95,96]) demonstrate that late time motions were 

strongly influenced by the preexisting joints.  Although 

the available data base is restricted to ground shock 

phenomena pertinent to near surface structures, similar 

anisotropic effects are likely in the case of jointed media, 

even at great depths.  The model of regularly jointed media 

presented in Section VI provides a framework for including 

planes of weakness and block motion in a continuum code for 

calculating gross ground motion effects. 

The POROUS code for computing ground motion effects 

within the framework of the Theory of Interacting Continua 

has now reached the stage of development where it can be 

used for predictive calculations (Section V).  Its ability 

to treat relative motion between the rock and water com- 

ponents in highly permeable wet aggegate media, such as 

saturated sands and corrals, suggests application of POROUS 

for calculations in support of the PACE program.  Its 

ability to explicitly monitor the pore water pressure in a 

wet competent medium suggests a parametric study of the 

implications to ground motion of the effective stress law 

of rock mechanics which has evolved from laboratory tri- 

axial tests on cylindrical specimens under quasistatic loading 

conditions. 
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